N-Acetylmuramic Acid (MurNAc) Auxotrophy of the Oral PathogenTannerella forsythia: Characterization of a MurNAc Kinase and Analysis of Its Role in Cell Wall Metabolism.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Hottmann, IsabelMayer, Valentina M T
Tomek, Markus B
Friedrich, Valentin
Calvert, Matthew B
Titz, Alexander
Schäffer, Christina
Mayer, Christoph
Issue Date
2018
Metadata
Show full item recordAbstract
Tannerella forsythia is an anaerobic, Gram-negative oral pathogen that thrives in multispecies gingival biofilms associated with periodontitis. The bacterium is auxotrophic for the commonly essential bacterial cell wall sugarN-acetylmuramic acid (MurNAc) and, thus, strictly depends on an exogenous supply of MurNAc for growth and maintenance of cell morphology. A MurNAc transporter (Tf_MurT; Tanf_08375) and an ortholog of theEscherichia colietherase MurQ (Tf_MurQ; Tanf_08385) converting MurNAc-6-phosphate to GlcNAc-6-phosphate were recently described forT. forsythia.In between the respective genes on theT. forsythiagenome, a putative kinase gene is located. In this study, the putative kinase (Tf_MurK; Tanf_08380) was produced as a recombinant protein and biochemically characterized. Kinetic studies revealed Tf_MurK to be a 6-kinase with stringent substrate specificity for MurNAc exhibiting a 6 × 104-fold higher catalytic efficiency (kcat/Km) for MurNAc than forN-acetylglucosamine (GlcNAc) withkcatvalues of 10.5 s-1and 0.1 s-1andKmvalues of 200 μM and 116 mM, respectively. The enzyme kinetic data suggest that Tf_MurK is subject to substrate inhibition (Ki[S]= 4.2 mM). To assess the role of Tf_MurK in the cell wall metabolism ofT. forsythia, a kinase deletion mutant (ΔTf_murK::erm) was constructed. This mutant accumulated MurNAc intracellularly in the exponential phase, indicating the capability to take up MurNAc, but inability to catabolize MurNAc. In the stationary phase, the MurNAc level was reduced in the mutant, while the level of the peptidoglycan precursor UDP-MurNAc-pentapeptide was highly elevated. Further, according to scanning electron microscopy evidence, theΔTf_murK::ermmutant was more tolerant toward low MurNAc concentration in the medium (below 0.5 μg/ml) before transition from healthy, rod-shaped to fusiform cells occurred, while the parent strain required > 1 μg/ml MurNAc for optimal growth. These data reveal thatT. forsythiareadily catabolizes exogenous MurNAc but simultaneously channels a proportion of the sugar into peptidoglycan biosynthesis. Deletion ofTf_murKblocks MurNAc catabolism and allows the direction of MurNAc solely to peptidoglycan biosynthesis, resulting in a growth advantage in MurNAc-depleted medium. This work increases our understanding of theT. forsythiacell wall metabolism and may pave new routes for lead finding in the treatment of periodontitis.Citation
N-Acetylmuramic Acid (MurNAc) Auxotrophy of the Oral PathogenTannerella forsythia: Characterization of a MurNAc Kinase and Analysis of Its Role in Cell Wall Metabolism. 2018, 9:19 Front MicrobiolAffiliation
HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany.Journal
Frontiers in microbiologyPubMed ID
29434575Type
ArticleLanguage
enISSN
1664-302Xae974a485f413a2113503eed53cd6c53
10.3389/fmicb.2018.00019
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/4.0/
Related articles
- Identification of a Novel N-Acetylmuramic Acid Transporter in Tannerella forsythia.
- Authors: Ruscitto A, Hottmann I, Stafford GP, Schäffer C, Mayer C, Sharma A
- Issue date: 2016 Nov 15
- Utilization of different MurNAc sources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG.
- Authors: Mayer VMT, Tomek MB, Figl R, Borisova M, Hottmann I, Blaukopf M, Altmann F, Mayer C, Schäffer C
- Issue date: 2020 Nov 17
- Peptidoglycan Salvage Enables the Periodontal Pathogen Tannerella forsythia to Survive within the Oral Microbial Community.
- Authors: Hottmann I, Borisova M, Schäffer C, Mayer C
- Issue date: 2021
- N-acetylmuramic acid recognition by MurK kinase from the MurNAc auxotrophic oral pathogen Tannerella forsythia.
- Authors: Stasiak AC, Gogler K, Borisova M, Fink P, Mayer C, Stehle T, Zocher G
- Issue date: 2023 Sep
- NamZ1 and NamZ2 from the Oral Pathogen Tannerella forsythia Are Peptidoglycan Processing Exo-β-N-Acetylmuramidases with Distinct Substrate Specificities.
- Authors: Borisova M, Balbuchta K, Lovering A, Titz A, Mayer C
- Issue date: 2022 Mar 15