Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2018-01-01
Metadata
Show full item recordAbstract
Emerging pathogens are a major threat to public health, however understanding how pathogens adapt to new niches remains a challenge. New methods are urgently required to provide functional insights into pathogens from the massive genomic data sets now being generated from routine pathogen surveillance for epidemiological purposes. Here, we measure the burden of atypical mutations in protein coding genes across independently evolved Salmonella enterica lineages, and use these as input to train a random forest classifier to identify strains associated with extraintestinal disease. Members of the species fall along a continuum, from pathovars which cause gastrointestinal infection and low mortality, associated with a broad host-range, to those that cause invasive infection and high mortality, associated with a narrowed host range. Our random forest classifier learned to perfectly discriminate long-established gastrointestinal and invasive serovars of Salmonella. Additionally, it was able to discriminate recently emerged Salmonella Enteritidis and Typhimurium lineages associated with invasive disease in immunocompromised populations in sub-Saharan Africa, and within-host adaptation to invasive infection. We dissect the architecture of the model to identify the genes that were most informative of phenotype, revealing a common theme of degradation of metabolic pathways in extraintestinal lineages. This approach accurately identifies patterns of gene degradation and diversifying selection specific to invasive serovars that have been captured by more labour-intensive investigations, but can be readily scaled to larger analyses.Affiliation
HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.PubMed ID
29738521Type
ArticleISSN
1553-7404ae974a485f413a2113503eed53cd6c53
10.1371/journal.pgen.1007333
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
Related articles
- Genomic Analysis of Salmonella enterica Serovar Typhimurium Characterizes Strain Diversity for Recent U.S. Salmonellosis Cases and Identifies Mutations Linked to Loss of Fitness under Nitrosative and Oxidative Stress.
- Authors: Hayden HS, Matamouros S, Hager KR, Brittnacher MJ, Rohmer L, Radey MC, Weiss EJ, Kim KB, Jacobs MA, Sims-Day EH, Yue M, Zaidi MB, Schifferli DM, Manning SD, Walson JL, Miller SI
- Issue date: 2016 Mar 8
- Association between phylogeny, virulence potential and serovars of Salmonella enterica.
- Authors: Litrup E, Torpdahl M, Malorny B, Huehn S, Christensen H, Nielsen EM
- Issue date: 2010 Oct
- Pathogenicity and phenotypic analysis of sopB, sopD and pipD virulence factors in Salmonella enterica serovar typhimurium and Salmonella enterica serovar Agona.
- Authors: Khoo CH, Sim JH, Salleh NA, Cheah YK
- Issue date: 2015 Jan
- Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe.
- Authors: Huehn S, La Ragione RM, Anjum M, Saunders M, Woodward MJ, Bunge C, Helmuth R, Hauser E, Guerra B, Beutlich J, Brisabois A, Peters T, Svensson L, Madajczak G, Litrup E, Imre A, Herrera-Leon S, Mevius D, Newell DG, Malorny B
- Issue date: 2010 May
- Host-specificity of Salmonella enterica serovar Gallinarum: insights from comparative genomics.
- Authors: Eswarappa SM, Janice J, Balasundaram SV, Dixit NM, Chakravortty D
- Issue date: 2009 Jul