Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2017-12-13
Metadata
Show full item recordAbstract
The field of photopharmacology aims to introduce smart drugs that, through the incorporation of molecular photoswitches, allow for the remote spatial and temporal control of bioactivity by light. This concept could be particularly beneficial in the treatment of bacterial infections, by reducing the systemic and environmental side effects of antibiotics. A major concern in the realization of such light-responsive drugs is the wavelength of the light that is applied. Studies on the photocontrol of biologically active agents mostly rely on UV light, which is cytotoxic and poorly suited for tissue penetration. In our efforts to develop photoswitchable antibiotics, we introduce here antibacterial agents whose activity can be controlled by visible light, while getting into the therapeutic window. For that purpose, a UV-light-responsive core structure based on diaminopyrimidines with suitable antibacterial properties was identified. Subsequent modification of an azobenzene photoswitch moiety led to structures that allowed us to control their activity against Escherichia coli in both directions with light in the visible region. For the first time, full in situ photocontrol of antibacterial activity in the presence of bacteria was attained with green and violet light. Most remarkably, one of the diaminopyrimidines revealed an at least 8-fold difference in activity before and after irradiation with red light at 652 nm, showcasing the effective "activation" of a biological agent otherwise inactive within the investigated concentration range, and doing so with red light in the therapeutic window.Affiliation
HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.PubMed ID
29136373Type
ArticleISSN
1520-5126ae974a485f413a2113503eed53cd6c53
10.1021/jacs.7b09281
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States