Medium throughput breathing human primary cell alveolus-on-chip model.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Stucki, Janick DHobi, Nina
Galimov, Artur
Stucki, Andreas O
Schneider-Daum, Nicole
Lehr, Claus-Michael
Huwer, Hanno
Frick, Manfred
Funke-Chambour, Manuela
Geiser, Thomas
Guenat, Olivier T
Issue Date
2018-09-25
Metadata
Show full item recordAbstract
Organs-on-chips have the potential to improve drug development efficiency and decrease the need for animal testing. For the successful integration of these devices in research and industry, they must reproduce in vivo contexts as closely as possible and be easy to use. Here, we describe a 'breathing' lung-on-chip array equipped with a passive medium exchange mechanism that provide an in vivo-like environment to primary human lung alveolar cells (hAEpCs) and primary lung endothelial cells. This configuration allows the preservation of the phenotype and the function of hAEpCs for several days, the conservation of the epithelial barrier functionality, while enabling simple sampling of the supernatant from the basal chamber. In addition, the chip design increases experimental throughput and enables trans-epithelial electrical resistance measurements using standard equipment. Biological validation revealed that human primary alveolar type I (ATI) and type II-like (ATII) epithelial cells could be successfully cultured on the chip over multiple days. Moreover, the effect of the physiological cyclic strain showed that the epithelial barrier permeability was significantly affected. Long-term co-culture of primary human lung epithelial and endothelial cells demonstrated the potential of the lung-on-chip array for reproducible cell culture under physiological conditions. Thus, this breathing lung-on-chip array, in combination with patients' primary ATI, ATII, and lung endothelial cells, has the potential to become a valuable tool for lung research, drug discovery and precision medicine.Affiliation
HIPS, Helmholtz-Institut füt Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.PubMed ID
30254327Type
ArticleISSN
2045-2322ae974a485f413a2113503eed53cd6c53
10.1038/s41598-018-32523-x
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
Related articles
- Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
- Issue date: 2019 May 8
- A lung-on-a-chip array with an integrated bio-inspired respiration mechanism.
- Authors: Stucki AO, Stucki JD, Hall SR, Felder M, Mermoud Y, Schmid RA, Geiser T, Guenat OT
- Issue date: 2015 Mar 7
- Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane.
- Authors: Zamprogno P, Wüthrich S, Achenbach S, Thoma G, Stucki JD, Hobi N, Schneider-Daum N, Lehr CM, Huwer H, Geiser T, Schmid RA, Guenat OT
- Issue date: 2021 Feb 5
- Primary human coculture model of alveolo-capillary unit to study mechanisms of injury to peripheral lung.
- Authors: Hermanns MI, Fuchs S, Bock M, Wenzel K, Mayer E, Kehe K, Bittinger F, Kirkpatrick CJ
- Issue date: 2009 Apr
- Organoid-based expansion of patient-derived primary alveolar type 2 cells for establishment of alveolus epithelial Lung-Chip cultures.
- Authors: van Riet S, van Schadewijk A, Khedoe PPSJ, Limpens RWAL, Bárcena M, Stolk J, Hiemstra PS, van der Does AM
- Issue date: 2022 Apr 1