A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa.
Name:
supplementl material_1.pdf
Size:
1.039Mb
Format:
PDF
Description:
supplemental figures S1 to S3
Name:
supplemental material_2.xlsx
Size:
74.14Kb
Format:
Microsoft Excel 2007
Description:
supplemental table S4
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Nolan, Laura MWhitchurch, Cynthia B
Barquist, Lars
Katrib, Marilyn
Boinett, Christine J
Mayho, Matthew
Goulding, David
Charles, Ian G
Filloux, Alain
Parkhill, Julian
Cain, Amy K
Issue Date
2018-11-01
Metadata
Show full item recordAbstract
Pseudomonas aeruginosa is an extremely successful pathogen able to cause both acute and chronic infections in a range of hosts, utilizing a diverse arsenal of cell-associated and secreted virulence factors. A major cell-associated virulence factor, the Type IV pilus (T4P), is required for epithelial cell adherence and mediates a form of surface translocation termed twitching motility, which is necessary to establish a mature biofilm and actively expand these biofilms. P. aeruginosa twitching motility-mediated biofilm expansion is a coordinated, multicellular behaviour, allowing cells to rapidly colonize surfaces, including implanted medical devices. Although at least 44 proteins are known to be involved in the biogenesis, assembly and regulation of the T4P, with additional regulatory components and pathways implicated, it is unclear how these components and pathways interact to control these processes. In the current study, we used a global genomics-based random-mutagenesis technique, transposon directed insertion-site sequencing (TraDIS), coupled with a physical segregation approach, to identify all genes implicated in twitching motility-mediated biofilm expansion in P. aeruginosa. Our approach allowed identification of both known and novel genes, providing new insight into the complex molecular network that regulates this process in P. aeruginosa. Additionally, our data suggest that the flagellum-associated gene products have a differential effect on twitching motility, based on whether components are intra- or extracellular. Overall the success of our TraDIS approach supports the use of this global genomic technique for investigating virulence genes in bacterial pathogens.Affiliation
HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany.Publisher
Microbiology SocietyPubMed ID
30383525Type
ArticleISSN
2057-5858ae974a485f413a2113503eed53cd6c53
10.1099/mgen.0.000229
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
Related articles
- ChpC controls twitching motility-mediated expansion of Pseudomonas aeruginosa biofilms in response to serum albumin, mucin and oligopeptides.
- Authors: Nolan LM, McCaughey LC, Merjane J, Turnbull L, Whitchurch CB
- Issue date: 2020 Jul
- The Pseudomonas aeruginosa PilSR Two-Component System Regulates Both Twitching and Swimming Motilities.
- Authors: Kilmury SLN, Burrows LL
- Issue date: 2018 Jul 24
- Extracellular ATP inhibits twitching motility-mediated biofilm expansion by Pseudomonas aeruginosa.
- Authors: Nolan LM, Cavaliere R, Turnbull L, Whitchurch CB
- Issue date: 2015 Mar 1
- Twitching and Swimming Motility Play a Role in Ralstonia solanacearum Pathogenicity.
- Authors: Corral J, Sebastià P, Coll NS, Barbé J, Aranda J, Valls M
- Issue date: 2020 Mar 4
- Influence of twitching and swarming motilities on biofilm formation in Pseudomonas strains.
- Authors: Otton LM, da Silva Campos M, Meneghetti KL, Corção G
- Issue date: 2017 Jul