An endothelial cell line infected by Kaposi's sarcoma-associated herpes virus (KSHV) allows the investigation of Kaposi's sarcoma and the validation of novel viral inhibitors in vitro and in vivo.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Dubich, TatyanaLieske, Anna
Santag, Susann
Beauclair, Guillaume
Rückert, Jessica
Herrmann, Jennifer
Gorges, Jan
Büsche, Guntram
Kazmaier, Uli
Hauser, Hansjörg
Stadler, Marc
Schulz, Thomas F
Wirth, Dagmar
Issue Date
2019-01-04
Metadata
Show full item recordAbstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi's sarcoma. KEY MESSAGES: Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection. KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus. A 3D invasiveness assay is predictive for tumor reduction in vivo. Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.Affiliation
HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.PubMed ID
30610257Type
ArticleLanguage
enISSN
1432-1440ae974a485f413a2113503eed53cd6c53
10.1007/s00109-018-01733-1
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International
Related articles
- 3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells.
- Authors: Dubich T, Dittrich A, Bousset K, Geffers R, Büsche G, Köster M, Hauser H, Schulz TF, Wirth D
- Issue date: 2021 Mar
- Kaposi's Sarcoma-Associated Herpesvirus Infection Induces the Expression of Neuroendocrine Genes in Endothelial Cells.
- Authors: Valiya Veettil M, Krishna G, Roy A, Ghosh A, Dutta D, Kumar B, Chakraborty S, Anju TR, Sharma-Walia N, Chandran B
- Issue date: 2020 Mar 31
- Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi's sarcoma-associated herpesvirus latency in vitro and in vivo.
- Authors: An FQ, Folarin HM, Compitello N, Roth J, Gerson SL, McCrae KR, Fakhari FD, Dittmer DP, Renne R
- Issue date: 2006 May
- Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication.
- Authors: Sanchez EL, Pulliam TH, Dimaio TA, Thalhofer AB, Delgado T, Lagunoff M
- Issue date: 2017 May 15
- Modified Cross-Linking, Ligation, and Sequencing of Hybrids (qCLASH) Identifies Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Targets in Endothelial Cells.
- Authors: Gay LA, Sethuraman S, Thomas M, Turner PC, Renne R
- Issue date: 2018 Apr 15