C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-Regulatory Function.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Wang, YongDembowsky, Klaus
Chevalier, Eric
Stüve, Philipp
Korf-Klingebiel, Mortimer
Lochner, Matthias
Napp, L Christian
Frank, Heike
Brinkmann, Eva
Kanwischer, Anna
Bauersachs, Johann
Gyongyosi, Mariann
Sparwasser, Tim
Wollert, Kai C
Issue Date
2019-01-30
Metadata
Show full item recordAbstract
Acute myocardial infarction (MI) elicits an inflammatory response that drives tissue repair and adverse cardiac remodeling. Inflammatory cell trafficking after MI is controlled by C X-C motif chemokine ligand 12 (CXCL12) and its receptor, C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 antagonists mobilize inflammatory cells and promote infarct repair, but the cellular mechanisms are unclear. We investigated the therapeutic potential and mode of action of the peptidic macrocycle CXCR4 antagonist POL5551 in mice with reperfused MI. We applied cell depletion and adoptive transfer strategies using lymphocyte-deficient Rag1 knockout mice; DEREG mice, which express a diphtheria toxin receptor-enhanced green fluorescent protein fusion protein under the control of the promoter/enhancer region of the regulatory T (T Intraperitoneal POL5551 injections in wild-type mice (8 mg/kg at 2, 4, 6, and 8 d) enhanced angiogenesis in the infarct border-zone, reduced scar size, and attenuated left ventricular remodeling and contractile dysfunction at 28 d. Treatment effects were absent in splenectomized wild-type mice, Rag1 knockout mice, and T Our data confirm CXCR4 blockade as a promising treatment strategy after MI. We identify dendritic cell-primed splenic TAffiliation
TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany.PubMed ID
30696265Type
ArticleLanguage
enISSN
1524-4539ae974a485f413a2113503eed53cd6c53
10.1161/CIRCULATIONAHA.118.036053
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International