Show simple item record

dc.contributor.authorFranke, Raimo
dc.contributor.authorHinkelmann, Bettina
dc.contributor.authorFetz, Verena
dc.contributor.authorStradal, Theresia
dc.contributor.authorSasse, Florenz
dc.contributor.authorKlawonn, Frank
dc.contributor.authorBrönstrup, Mark
dc.date.accessioned2019-02-12T08:42:10Z
dc.date.available2019-02-12T08:42:10Z
dc.date.issued2019-01-25
dc.identifier.issn2472-5552
dc.identifier.issn2472-5560
dc.identifier.pmid30681906
dc.identifier.doi10.1177/2472555218819459
dc.identifier.urihttp://hdl.handle.net/10033/621683
dc.description.abstractMode of action (MoA) identification of bioactive compounds is very often a challenging and time-consuming task. We used a label-free kinetic profiling method based on an impedance readout to monitor the time-dependent cellular response profiles for the interaction of bioactive natural products and other small molecules with mammalian cells. Such approaches have been rarely used so far due to the lack of data mining tools to properly capture the characteristics of the impedance curves. We developed a data analysis pipeline for the xCELLigence Real-Time Cell Analysis detection platform to process the data, assess and score their reproducibility, and provide rank-based MoA predictions for a reference set of 60 bioactive compounds. The method can reveal additional, previously unknown targets, as exemplified by the identification of tubulin-destabilizing activities of the RNA synthesis inhibitor actinomycin D and the effects on DNA replication of vioprolide A. The data analysis pipeline is based on the statistical programming language R and is available to the scientific community through a GitHub repository.en_US
dc.publisherSageen_US
dc.relation.urlhttp://journals.sagepub.com/doi/10.1177/2472555218819459en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectmode of actionen_US
dc.subjectimpedance spectroscopyen_US
dc.subjecttarget identificationen_US
dc.subjectnatural productsen_US
dc.subjectactinomycin Den_US
dc.titlexCELLanalyzer: A Framework for the Analysis of Cellular Impedance Measurements for Mode of Action Discoveryen_US
dc.typeArticleen_US
dc.contributor.departmentHZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.en_US
dc.identifier.journalSLAS Discoveryen_US
dc.source.beginpage247255521881945
refterms.dateFOA2019-02-12T08:42:11Z
dc.source.journaltitleSLAS DISCOVERY: Advancing Life Sciences R&D


Files in this item

Thumbnail
Name:
Franke et al.pdf
Size:
523.8Kb
Format:
PDF
Description:
original manuscript
Thumbnail
Name:
Supplemental_Information_1807.pdf
Size:
2.241Mb
Format:
PDF
Description:
supplemental information
Thumbnail
Name:
figures1807.pdf
Size:
298.5Kb
Format:
PDF
Description:
figures

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International