• Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells.

      Delacher, Michael; Simon, Malte; Sanderink, Lieke; Hotz-Wagenblatt, Agnes; Wuttke, Marina; Schambeck, Kathrin; Schmidleithner, Lisa; Bittner, Sebastian; Pant, Asmita; Ritter, Uwe; et al. (Cell Press, 2021-03-30)
      Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.