High-resolution epidemic simulation using within-host infection and contact data.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2018-07-17
Metadata
Show full item recordAbstract
BACKGROUND: Recent epidemics have entailed global discussions on revamping epidemic control and prevention approaches. A general consensus is that all sources of data should be embraced to improve epidemic preparedness. As a disease transmission is inherently governed by individual-level responses, pathogen dynamics within infected hosts posit high potentials to inform population-level phenomena. We propose a multiscale approach showing that individual dynamics were able to reproduce population-level observations. METHODS: Using experimental data, we formulated mathematical models of pathogen infection dynamics from which we simulated mechanistically its transmission parameters. The models were then embedded in our implementation of an age-specific contact network that allows to express individual differences relevant to the transmission processes. This approach is illustrated with an example of Ebola virus (EBOV). RESULTS: The results showed that a within-host infection model can reproduce EBOV's transmission parameters obtained from population data. At the same time, population age-structure, contact distribution and patterns can be expressed using network generating algorithm. This framework opens a vast opportunity to investigate individual roles of factors involved in the epidemic processes. Estimating EBOV's reproduction number revealed a heterogeneous pattern among age-groups, prompting cautions on estimates unadjusted for contact pattern. Assessments of mass vaccination strategies showed that vaccination conducted in a time window from five months before to one week after the start of an epidemic appeared to strongly reduce epidemic size. Noticeably, compared to a non-intervention scenario, a low critical vaccination coverage of 33% cannot ensure epidemic extinction but could reduce the number of cases by ten to hundred times as well as lessen the case-fatality rate. CONCLUSIONS: Experimental data on the within-host infection have been able to capture upfront key transmission parameters of a pathogen; the applications of this approach will give us more time to prepare for potential epidemics. The population of interest in epidemic assessments could be modelled with an age-specific contact network without exhaustive amount of data. Further assessments and adaptations for different pathogens and scenarios to explore multilevel aspects in infectious diseases epidemics are underway.Citation
BMC Public Health. 2018 Jul 17;18(1):886. doi: 10.1186/s12889-018-5709-xAffiliation
BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany.Publisher
BMCJournal
BMC Public HealthPubMed ID
30016958Type
ArticleLanguage
enISSN
1471-2458ae974a485f413a2113503eed53cd6c53
10.1186/s12889-018-5709-x
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International
Related articles
- Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
- Authors: Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, Moraleda C, Rogers L, Daniels K, Green P
- Issue date: 2022 Feb 1
- Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis.
- Authors: Ajelli M, Merler S, Fumanelli L, Pastore Y Piontti A, Dean NE, Longini IM Jr, Halloran ME, Vespignani A
- Issue date: 2016 Sep 7
- Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
- Authors: Bioglio L, Génois M, Vestergaard CL, Poletto C, Barrat A, Colizza V
- Issue date: 2016 Nov 14
- Digital contact tracing technologies in epidemics: a rapid review.
- Authors: Anglemyer A, Moore TH, Parker L, Chambers T, Grady A, Chiu K, Parry M, Wilczynska M, Flemyng E, Bero L
- Issue date: 2020 Aug 18
- Effects of contact network structure on epidemic transmission trees: implications for data required to estimate network structure.
- Authors: Carnegie NB
- Issue date: 2018 Jan 30