• Labrenzia salina sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum.

      Camacho, Maria; Redondo-Gómez, Susana; Rodríguez-Llorente, Ignacio; Rohde, M; Spröer, Cathrin; Schumann, Peter; Klenk, Hans-Peter; Montero-Calasanz, Maria Del Carmen; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-12)
      A novel, halophilic, motile, rod-shaped, Gram-staining-negative and non-endospore forming bacterium, designated Cs25T, was isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum growing in a tidal flat. Strain Cs25T was observed to be catalase-negative and oxidase-positive, and to hydrolyse hypoxanthine. Growth occurred from 15 to 40 °C, at pH 7.0-10.0 and with 1-11 % (w/v) NaCl. Q-10 was identified as the dominant ubiquinone, and the major cellular fatty acids were C18 : 1ω7c, 11-methyl C18 : 1ω7c, C20 : 1ω7c and C18 : 0. The polar lipids comprised phosphatidylmonomethylethanolamine, phosphatidylcholine, sulphoquinovosyldiacylglyceride, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The 16S rRNA gene showed 99.19, 98.6 and 98.59 % sequence identity with Labrenzia alba DSM 18320T, L. aggregata DSM 13394T and L. marina DSM 17023T, respectively. Based on the phenotypic and molecular features and DNA-DNA hybridization data, it is concluded that strain Cs25T represents a novel species for which the name Labrenzia salinasp. nov. is proposed. The type strain is Cs25T (=DSM 29163T=CECT 8816T).
    • Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary.

      Peeters, Stijn H; Wiegand, Sandra; Kallscheuer, Nicolai; Jogler, Mareike; Heuer, Anja; Jetten, Mike S M; Boedeker, Christian; Rohde, Manfred; Jogler, Christian; HZI,Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (Springer, 2020-04-01)
      A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
    • Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae.

      Heß, Nathalie; Waldow, Franziska; Kohler, Thomas P; Rohde, Manfred; Kreikemeyer, Bernd; Gómez-Mejia, Alejandro; Hain, Torsten; Schwudke, Dominik; Vollmer, Waldemar; Hammerschmidt, Sven; et al. (2017-12-12)
      Teichoic acid (TA), a crucial cell wall constituent of the pathobiont Streptococcus pneumoniae, is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA). Both TA polymers share a common precursor synthesis pathway, but differ in the final transfer of the TA chain to either peptidoglycan or a glycolipid. Here, we show that LTA exhibits a different linkage conformation compared to WTA, and identify TacL (previously known as RafX) as a putative lipoteichoic acid ligase required for LTA assembly. Pneumococcal mutants deficient in TacL lack LTA and show attenuated virulence in mouse models of acute pneumonia and systemic infections, although they grow normally in culture. Hence, LTA is important for S. pneumoniae to establish systemic infections, and TacL represents a potential target for antimicrobial drug development.
    • Localization of MLH3 at the centrosomes.

      Roesner, Lennart M; Mielke, Christian; Faehnrich, Silke; Merkhoffer, Yvonne; Dittmar, Kurt E J; Drexler, Hans G; Dirks, Wilhelm G (2014)
      Mutations in human DNA mismatch repair (MMR) genes are commonly associated with hereditary nonpolyposis colorectal cancer (HNPCC). MLH1 protein heterodimerizes with PMS2, PMS1, and MLH3 to form MutLα, MutLβ, and MutLγ, respectively. We reported recently stable expression of GFP-linked MLH3 in human cell lines. Monitoring these cell lines during the cell cycle using live cell imaging combined with confocal microscopy, we detected accumulation of MLH3 at the centrosomes. Fluorescence recovery after photobleaching (FRAP) revealed high mobility and fast exchange rates at the centrosomes as it has been reported for other DNA repair proteins. MLH3 may have a role in combination with other repair proteins in the control of centrosome numbers.
    • Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion.

      Stahnke, Stephanie; Döring, Hermann; Kusch, Charly; de Gorter, David J J; Dütting, Sebastian; Guledani, Aleks; Pleines, Irina; Schnoor, Michael; Sixt, Michael; Geffers, Robert; et al. (Wiley-VCH, 2021-03-11)
      Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.
    • Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding.

      Danilov, Sergei M; Lünsdorf, Heinrich; Akinbi, Henry T; Nesterovitch, Andrew B; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V; Piegeler, Tobias; Golukhova, Elena Z; Schwartz, David E; et al. (2016-10-13)
      Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.
    • Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model.

      Ullah, Sami; Seidel, Katja; Türkkan, Sibel; Warwas, Dawid Peter; Dubich, Tatyana; Rohde, Manfred; Hauser, Hansjörg; Behrens, Peter; Kirschning, Andreas; Köster, Mario; et al. (2018-12-23)
      Targeted delivery of drugs is a major challenge in treatment of diverse diseases. Systemically administered drugs demand high doses and are accompanied by poor selectivity and side effects on non-target cells. Here, we introduce a new principle for targeted drug delivery. It is based on macrophages as transporters for nanoparticle-coupled drugs as well as controlled release of drugs by hyperthermia mediated disruption of the cargo cells and simultaneous deliberation of nanoparticle-linked drugs. Hyperthermia is induced by an alternating electromagnetic field (AMF) that induces heat from silica-coated superparamagnetic iron oxide nanoparticles (SPIONs). We show proof-of-principle of controlled release by the simultaneous disruption of the cargo cells and the controlled, AMF induced release of a toxin, which was covalently linked to silica-coated SPIONs via a thermo-sensitive linker. Cells that had not been loaded with SPIONs remain unaffected. Moreover, in a 3D co-culture model we demonstrate specific killing of associated tumour cells when employing a ratio as low as 1:40 (SPION-loaded macrophage: tumour cells). Overall, our results demonstrate that AMF induced drug release from macrophage-entrapped nanoparticles is tightly controlled and may be an attractive novel strategy for targeted drug release.
    • Maioricimonas rarisocia gen. nov., sp. nov., a novel planctomycete isolated from marine sediments close to Mallorca Island.

      Rivas-Marin, Elena; Wiegand, Sandra; Kallscheuer, Nicolai; Jogler, Mareike; Peeters, Stijn H; Heuer, Anja; Jetten, Mike S M; Boedeker, Christian; Rohde, Manfred; Devos, Damien P; et al. (Springer, 2020-06-25)
      Planctomycetes are ubiquitous bacteria with environmental and biotechnological relevance. Axenic cultures of planctomycetal strains are the basis to analyse their unusual biology and largely uncharacterised metabolism in more detail. Here, we describe strain Mal4T isolated from marine sediments close to Palma de Mallorca, Spain. Strain Mal4T displays common planctomycetal features, such as division by polar budding and the presence of fimbriae and crateriform structures on the cell surface. Cell growth was observed at ranges of 10-39 °C (optimum at 31 °C) and pH 6.5-9.0 (optimum at 7.5). The novel strain shows as pear-shaped cells of 2.0 ± 0.2 × 1.4 ± 0.1 µm and is one of the rare examples of orange colony-forming Planctomycetes. Its genome has a size of 7.7 Mb with a G+C content of 63.4%. Phylogenetically, we conclude that strain Mal4T (= DSM 100296T = LMG 29133T) is the type strain representing the type species of a novel genus, for which we propose the name Maioricimonas rarisocia gen. nov., sp. nov.
    • Mesenteric lymph node stromal cell-derived extracellular vesicles contribute to peripheral de novo induction of Foxp3(+) regulatory T cells.

      Pasztoi, Maria; Pezoldt, Joern; Beckstette, Michael; Lipps, Christoph; Wirth, Dagmar; Rohde, M; Paloczi, Krisztina; Buzas, Edit Iren; Huehn, Jochen; Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-08-18)
      Intestinal regulatory T cells (Tregs) are fundamental in peripheral tolerance toward commensals and food-borne antigens. Accordingly, gut-draining mesenteric lymph nodes (mLNs) represent a site of efficient peripheral de novo Treg induction when compared to skin-draining peripheral LNs (pLNs), and we had recently shown that LN stromal cells substantially contribute to this process. Here, we aimed to unravel the underlying molecular mechanisms and generated immortalized fibroblastic reticular cell lines (iFRCs) from mLNs and pLNs, allowing unlimited investigation of this rare stromal cell subset. In line with our previous findings, mLN-iFRCs showed a higher Treg-inducing capacity when compared to pLN-iFRCs. RNA-seq analysis focusing on secreted molecules revealed a more tolerogenic phenotype of mLN- as compared to pLN-iFRCs. Remarkably, mLN-iFRCs produced substantial numbers of microvesicles (MVs) that carried elevated levels of TGF-β when compared to pLN-iFRC-derived MVs, and these novel players of intercellular communication were shown to be responsible for the tolerogenic properties of mLN-iFRCs. Thus, stromal cells originating from mLNs contribute to peripheral tolerance by fostering de novo Treg induction using TGF-β-carrying MVs. This finding provides novel insights into the subcellular/molecular mechanisms of de novo Treg induction and might serve as promising tool for future therapeutic applications to treat inflammatory disorders.
    • Metabolic Rearrangements Causing Elevated Proline and Polyhydroxybutyrate Accumulation During the Osmotic Adaptation Response of .

      Godard, Thibault; Zühlke, Daniela; Richter, Georg; Wall, Melanie; Rohde, Manfred; Riedel, Katharina; Poblete-Castro, Ignacio; Krull, Rainer; Biedendieck, Rebekka; HZI,Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (Frontiers, 2020-02-21)
      For many years now, Bacillus megaterium serves as a microbial workhorse for the high-level production of recombinant proteins in the g/L-scale. However, efficient and stable production processes require the knowledge of the molecular adaptation strategies of the host organism to establish optimal environmental conditions. Here, we interrogated the osmotic stress response of B. megaterium using transcriptome, proteome, metabolome, and fluxome analyses. An initial transient adaptation consisted of potassium import and glutamate counterion synthesis. The massive synthesis of the compatible solute proline constituted the second longterm adaptation process. Several stress response enzymes involved in iron scavenging and reactive oxygen species (ROS) fighting proteins showed higher levels under prolonged osmotic stress induced by 1.8 M NaCl. At the same time, the downregulation of the expression of genes of the upper part of glycolysis resulted in the activation of the pentose phosphate pathway (PPP), generating an oversupply of NADPH. The increased production of lactate accompanied by the reduction of acetate secretion partially compensate for the unbalanced (NADH/NAD+) ratio. Besides, the tricarboxylic acid cycle (TCA) mainly supplies the produced NADH, as indicated by the higher mRNA and protein levels of involved enzymes, and further confirmed by 13C flux analyses. As a consequence of the metabolic flux toward acetyl-CoA and the generation of an excess of NADPH, B. megaterium redirected the produced acetyl-CoA toward the polyhydroxybutyrate (PHB) biosynthetic pathway accumulating around 30% of the cell dry weight (CDW) as PHB. This direct relation between osmotic stress and intracellular PHB content has been evidenced for the first time, thus opening new avenues for synthesizing this valuable biopolymer using varying salt concentrations under non-limiting nutrient conditions.
    • Microbiome Yarns: bacterial predators, tissue tropism and molecular decoys.

      Timmis, Kenneth; Jebok, Franziska; Molinari, Gabriella; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Thieme Verlag, 2020-12-26)
      This Crystal Ball speculates on the potential of molecular decoys for prevention and therapy in infectious diseases. It is dedicated to the memory of Singh Chhatwal, who pioneered research on disguises and decoys produced by Streptococcus, and so much more.
    • Microbiome Yarns: human biome reproduction, evolution and visual acuity,,.

      Timmis, Kenneth; Jebok, Franziska; Molinari, Gabriella; Rohde, Manfred; Lahti, Leo; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01)
    • Microbiome yarns: microbiome basis of memory,,.

      Timmis, Kenneth; Jebok, Franziska; Molinari, Gabriella; Rohde, M; Timmis, James Kenneth; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
    • Microbiome Yarns: microbiome of the built environment, paranormal microbiology, and the power of single cell genomics1,2,3,4.

      Timmis, Kenneth; Jebok, Franziska; Rohde, Manfred; Molinari, Gabriella; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-05-16)
    • Microbiome yarns: The Global Phenotype-Genotype Survey. Episode III: importance of microbiota diversification for microbiome function and biome health.

      Timmis, Kenneth; Jebok, Franziska; Rohde, M; Lahti, Leo; Molinari, Gabriella; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2019-01-01)
    • Microbiome yarns: The Global Phenotype-Genotype Survey: Episode I: all my worldly goods, including my microbiome, I thee endow.

      Timmis, Kenneth; Jebok, Franziska; Rohde, M; Molinari, Gabriella; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley and Sons, 2019-01-01)
    • Microbiome yarns: the Global Phenotype-Genotype Survey: Episode II: laryngeal microbiota and vocal phenotypes (or diction and addiction).

      Timmis, Kenneth; Jebok, Franziska; Rohde, M; Molinari, Gabriella; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2019-03-01)
    • Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells.

      Puhm, Florian; Afonyushkin, Taras; Resch, Ulrike; Obermayer, Georg; Rohde, Manfred; Penz, Thomas; Schuster, Michael; Wagner, Gabriel; Rendeiro, Andre F; Melki, Imene; et al. (Lippincott,Williams & Wilkins, 2019-06-21)
      Extracellular vesicles, including microvesicles, are increasingly recognized as important mediators in cardiovascular disease. The cargo and surface proteins they carry are considered to define their biological activity, including their inflammatory properties. Monocyte to endothelial cell signaling is a prerequisite for the propagation of inflammatory responses. However, the contribution of microvesicles in this process is poorly understood. OBJECTIVE: To elucidate the mechanisms by which microvesicles derived from activated monocytic cells exert inflammatory effects on endothelial cells. METHODS AND RESULTS: LPS (lipopolysaccharide)-stimulated monocytic cells release free mitochondria and microvesicles with mitochondrial content as demonstrated by flow cytometry, quantitative polymerase chain reaction, Western Blot, and transmission electron microscopy. Using RNAseq analysis and quantitative reverse transcription-polymerase chain reaction, we demonstrated that both mitochondria directly isolated from and microvesicles released by LPS-activated monocytic cells, as well as circulating microvesicles isolated from volunteers receiving low-dose LPS-injections, induce type I IFN (interferon), and TNF (tumor necrosis factor) responses in endothelial cells. Depletion of free mitochondria significantly reduced the ability of these microvesicles to induce type I IFN and TNF-dependent genes. We identified mitochondria-associated TNFα and RNA from stressed mitochondria as major inducers of these responses. Finally, we demonstrated that the proinflammatory potential of microvesicles and directly isolated mitochondria were drastically reduced when they were derived from monocytic cells with nonrespiring mitochondria or monocytic cells cultured in the presence of pyruvate or the mitochondrial reactive oxygen species scavenger MitoTEMPO. CONCLUSIONS: Mitochondria and mitochondria embedded in microvesicles constitute a major subset of extracellular vesicles released by activated monocytes, and their proinflammatory activity on endothelial cells is determined by the activation status of their parental cells. Thus, mitochondria may represent critical intercellular mediators in cardiovascular disease and other inflammatory settings associated with type I IFN and TNF signaling.
    • Molecular typing of Streptococcus suis strains isolated from diseased and healthy pigs between 1996-2016.

      Prüfer, T Louise; Rohde, Judith; Verspohl, Jutta; Rohde, M; de Greeff, Astrid; Willenborg, Jörg; Valentin-Weigand, Peter; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PLOS, 2019-01-01)
      Streptococcus suis is an economically important pathogen of pigs as well as a zoonotic cause of human disease. Serotyping is used for further characterization of isolates; some serotypes seem to be more virulent and more widely spread than others. This study characterizes a collection of German field isolates of Streptococcus suis from pigs dating from 1996 to 2016 with respect to capsular genes (cps) specific for individual serotypes and pathotype by multiplex PCR and relates results to the clinical background of these isolates. The most prominent finding was the reduction in prevalence of serotype-2/serotype-1/2 among invasive isolates during this sampling period, which might be attributed to widely implemented autogenous vaccination programs in swine against serotype 2 in Germany. In diseased pigs (systemically ill; respiratory disease) isolates of serotype-1/serotype-14, serotype-2/serotype-1/2, serotype 3 to 5 and 7 to 9 were most frequent while in carrier isolates a greater variety of cps types was found. Serotype-1/serotype-14 seemed to be preferentially located in joints, serotype 4 and serotype 3 in the central nervous system, respectively. The virulence associated extracellular protein factor was almost exclusively associated with invasive serotype-1/serotype-14 and serotype-2/serotype-1/2 isolates. In contrast, lung isolates of serotype-2/serotype-1/2 mainly harbored the gene for muramidase-released protein. Serotype 4 and serotype 9 isolates from clinically diseased pigs most frequently carried the muramidase-released protein gene and the suilysin gene. When examined by transmission electron microscopy all but one of the isolates which were non-typable by molecular and serological methods showed various amounts of capsular material indicating potentially new serotypes among these isolates. Given the variety of cps types/serotypes detected in pigs, not only veterinarians but also medical doctors should consider other serotypes than just serotype 2 when investigating potential human cases of Streptococcus suis infection.
    • Multiple mechanisms mediate resistance to sorafenib in urothelial cancer.

      Knievel, Judith; Schulz, Wolfgang A; Greife, Annemarie; Hader, Christiane; Lübke, Tobias; Schmitz, Ingo; Albers, Peter; Niegisch, Günter (2014)
      Genetic and epigenetic changes in the mitogen activated protein kinase (MAPK) signaling render urothelial cancer a potential target for tyrosine kinase inhibitor (TKI) treatment. However, clinical trials of several TKIs failed to prove efficacy. In this context, we investigated changes in MAPK signaling activity, downstream apoptotic regulators and changes in cell cycle distribution in different urothelial cancer cell lines (UCCs) upon treatment with the multikinase inhibitor sorafenib. None of the classical sorafenib targets (vascular endothelial growth factor receptor 1/-receptor 2, VEGFR1/-R2; platelet-derived growth factor receptor α/-receptor β, PDGFR-α/-β; c-KIT) was expressed at significant levels leaving RAF proteins as its likely molecular target. Low sorafenib concentrations paradoxically increased cell viability, whereas higher concentrations induced G1 arrest and eventually apoptosis. MAPK signaling remained partly active after sorafenib treatment, especially in T24 cells with an oncogenic HRAS mutation. AKT phosphorylation was increased, suggesting compensatory activation of the phosphatidylinositol-3-kinase (PI3K) pathway. Sorafenib regularly down regulated the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) protein, but combinatorial treatment with ABT-737 targeting other B-cell lymphoma 2 (Bcl-2) family proteins did not result in synergistic effects. In summary, efficacy of sorafenib in urothelial cancer cell lines appears hampered by limited effects on MAPK signaling, crosstalk with further cancer pathways and an anti-apoptotic state of UCCs. These observations may account for the lack of efficacy of sorafenib in clinical trials and should be considered more broadly in the development of signaling pathway inhibitors for drug therapy in urothelial carcinoma.