• Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium, Streptococcus salivarius.

      Couvigny, Benoit; Lapaque, Nicolas; Rigottier-Gois, Lionel; Guillot, Alain; Chat, Sophie; Meylheuc, Thierry; Kulakauskas, Saulius; Rohde, M; Mistou, Michel-Yves; Renault, Pierre; et al. (Wiley-Blackwell, 2017-01-01)
      Bacterial adhesion is a critical step for colonization of the host. The pioneer colonizer and commensal bacterium of the human gastrointestinal tract, Streptococcus salivarius, has strong adhesive properties but the molecular determinants of this adhesion remain uncharacterized. Serine‐rich repeat (SRR) glycoproteins are a family of adhesins that fulfil an important role in adhesion. In general, Gram‐positive bacterial genomes have a unique SRR glycoprotein‐encoding gene. We demonstrate that S. salivarius expresses three large and glycosylated surface‐exposed proteins – SrpA, SrpB and SrpC – that show characteristics of SRR glycoproteins and are secreted through the accessory SecA2/Y2 system. Two glycosyltransferases – GtfE/F – encoded outside of the secA2/Y2 locus, unusually, perform the first step of the sequential glycosylation process, which is crucial for SRR activity. We show that SrpB and SrpC play complementary adhesive roles involved in several steps of the colonization process: auto‐aggregation, biofilm formation and adhesion to a variety of host epithelial cells and components. We also show that at least one of the S. salivarius SRR glycoproteins is important for colonization in mice. SrpA, SrpB and SrpC are the main factors underlying the multifaceted adhesion of S. salivarius and, therefore, play a major role in host colonization.
    • Sulfate-Reducing Bacteria That Produce Exopolymers Thrive in the Calcifying Zone of a Hypersaline Cyanobacterial Mat.

      Spring, Stefan; Sorokin, Dimitry Y; Verbarg, Susanne; Rohde, M; Woyke, Tanja; Kyrpides, Nikos C; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (Frontiers, 2019-01-01)
      Calcifying microbial mats in hypersaline environments are important model systems for the study of the earliest ecosystems on Earth that started to appear more than three billion years ago and have been preserved in the fossil record as laminated lithified structures known as stromatolites. It is believed that sulfate-reducing bacteria play a pivotal role in the lithification process by increasing the saturation index of calcium minerals within the mat. Strain L21-Syr-ABT was isolated from anoxic samples of a several centimeters-thick microbialite-forming cyanobacterial mat of a hypersaline lake on the Kiritimati Atoll (Kiribati, Central Pacific). The novel isolate was assigned to the family Desulfovibrionaceae within the Deltaproteobacteria. Available 16S rRNA-based population surveys obtained from discrete layers of the mat indicate that the occurrence of a species-level clade represented by strain L21-Syr-ABT is restricted to a specific layer of the suboxic zone, which is characterized by the presence of aragonitic spherulites. To elucidate a possible function of this sulfate-reducing bacterium in the mineral formation within the mat a comprehensive phenotypic characterization was combined with the results of a comparative genome analysis. Among the determined traits of strain L21-Syr-ABT, several features were identified that could play a role in the precipitation of calcium carbonate: (i) the potential deacetylation of polysaccharides and consumption of substrates such as lactate and sulfate could mobilize free calcium; (ii) under conditions that favor the utilization of formate and hydrogen, the alkalinity engine within the mat is stimulated, thereby increasing the availability of carbonate; (iii) the production of extracellular polysaccharides could provide nucleation sites for calcium mineralization. In addition, our data suggest the proposal of the novel species and genus Desulfohalovibrio reitneri represented by the type strain L21-Syr-ABT (=DSM 26903T = JCM 18662T).
    • Isolation, characterization and analysis of bacteriophages from the haloalkaline lake Elmenteita, Kenya.

      Akhwale, Juliah Khayeli; Rohde, M; Rohde, Christine; Bunk, Boyke; Spröer, Cathrin; Boga, Hamadi Iddi; Klenk, Hans-Peter; Wittmann, Johannes; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (PLOS, 2019-01-01)
      As a step towards better understanding of diversity and biology of phages and their hosts in haloalkaline Lake Elmenteita, phages were isolated from sediment samples and overlying water using indigenous bacteria as hosts. 17 seemingly different phages of diverse morphotypes with different dimensions and partly exhibiting remarkably unusual ultrastructures were revealed by transmission electron microscopy. 12 clonal phage isolates were further characterized. Infection capability of the phages was optimum at 30–35°C and in alkali condition with optimum at pH 10–12. Structural protein profiles and restriction fragment length polymorphism analyses patterns were distinct for each of the phage type. Complete nucleotide sequences of phages vB-VmeM-32, vB_EauS-123 and vB_BhaS-171 genomes varied in size from 30,926–199,912 bp and G + C content of between 36.25–47.73%. A range of 56–260 potential open reading frames were identified and annotated. The results showed that the 12 phages were distinct from each other and confirmed the presence and diversity of phages in extreme environment of haloalkaline Lake Elmenteita. The phages were deposited at the German Collection of Microorganisms and Cell Cultures and three of their genomes uploaded to NCBI GenBank.
    • Microbiome yarns: The Global Phenotype-Genotype Survey. Episode III: importance of microbiota diversification for microbiome function and biome health.

      Timmis, Kenneth; Jebok, Franziska; Rohde, M; Lahti, Leo; Molinari, Gabriella; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2019-01-01)
    • Bacterial microcompartment-directed polyphosphate kinase promotes stable polyphosphate accumulation in E. coli.

      Liang, Mingzhi; Frank, Stefanie; Lünsdorf, Heinrich; Warren, Martin J; Prentice, Michael B; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2017-03-01)
      Processes for the biological removal of phosphate from wastewater rely on temporary manipulation of bacterial polyphosphate levels by phased environmental stimuli. In E. coli polyphosphate levels are controlled via the polyphosphate-synthesizing enzyme polyphosphate kinase (PPK1) and exopolyphosphatases (PPX and GPPA), and are temporarily enhanced by PPK1 overexpression and reduced by PPX overexpression. We hypothesised that partitioning PPK1 from cytoplasmic exopolyphosphatases would increase and stabilise E. coli polyphosphate levels. Partitioning was achieved by co-expression of E. coli PPK1 fused with a microcompartment-targeting sequence and an artificial operon of Citrobacter freundii bacterial microcompartment genes. Encapsulation of targeted PPK1 resulted in persistent phosphate uptake and stably increased cellular polyphosphate levels throughout cell growth and into the stationary phase, while PPK1 overexpression alone produced temporary polyphosphate increase and phosphate uptake. Targeted PPK1 increased polyphosphate in microcompartments 8-fold compared with non-targeted PPK1. Co-expression of PPX polyphosphatase with targeted PPK1 had little effect on elevated cellular polyphosphate levels because microcompartments retained polyphosphate. Co-expression of PPX with non-targeted PPK1 reduced cellular polyphosphate levels. Thus, subcellular compartmentalisation of a polymerising enzyme sequesters metabolic products from competing catabolism by preventing catabolic enzyme access. Specific application of this process to polyphosphate is of potential application for biological phosphate removal.
    • Homophilic protein interactions facilitate bacterial aggregation and IgG-dependent complex formation by the Streptococcus canis M protein SCM.

      Nerlich, Andreas; Lapschies, Antje-Maria; Kohler, Thomas P; Cornax, Ingrid; Eichhorn, Inga; Goldmann, Oliver; Krienke, Petra; Bergmann, Simone; Nizet, Victor; Hammerschmidt, Sven; et al. (Taylor & Francis, 2019-01-01)
      Streptococcus canis is a zoonotic agent that causes serious invasive diseases in domestic animals and humans, but knowledge about its pathogenic potential and underlying virulence mechanisms is limited. Here, we report on the ability of certain S. canis isolates to form large bacterial aggregates when grown in liquid broth. Bacterial aggregation was attributed to the presence and the self-binding activity of SCM, the M protein of S. canis, as evaluated by bacterial sedimentation assays, immunofluorescence- and electron microscopic approaches. Using a variety of truncated recombinant SCM fragments, we demonstrated that homophilic SCM interactions occur via the N-terminal, but not the C-terminal part, of the mature M protein. Interestingly, when incubated in human plasma, SCM forms soluble protein complexes comprising its known ligands, immunoglobulin G (IgG) and plasminogen (Plg). Co-incubation studies with purified host proteins revealed that SCM-mediated complex formation is based on the interaction of SCM with itself and with IgG, but not with Plg or fibrinogen (Fbg), well-established constituents of M protein-mediated protein complexes in human-associated streptococci. Notably, these soluble, SCM-mediated plasma complexes harbored complement factor C1q, which can induce complement breakdown in the periphery and therefore represent another immune evasion mechanism of SCM.
    • DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in ECOR31.

      Li, Fengyang; Cimdins, Annika; Rohde, Manfred; Jänsch, Lothar; Kaever, Volkhard; Nimtz, Manfred; Römling, Ute; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (ASM, 2019-03-05)
      Cyclic dinucleotides (cDNs) act as intracellular second messengers, modulating bacterial physiology to regulate the fundamental life style transition between motility and sessility commonly known as biofilm formation. Cyclic GMP-AMP (cGAMP), synthesized by the dinucleotide cyclase DncV, is a newly discovered cDN second messenger involved in virulence and chemotaxis in Vibrio cholerae O1 biovar El Tor. Here we report a novel role for horizontally transferred DncV in cGAMP production and regulation of biofilm formation and motility in the animal commensal strain Escherichia coli ECOR31. ECOR31 expresses a semiconstitutive temperature-independent rdar (red, dry, and rough) morphotype on Congo red agar plates characterized by the extracellular matrix components cellulose and curli fimbriae which requires activation by the major biofilm regulator CsgD and cyclic di-GMP signaling. In contrast, C-terminal His-tagged DncV negatively regulates the rdar biofilm morphotype and cell aggregation via downregulation of csgD mRNA steady-state level. Furthermore, DncV sequentially promotes and inhibits adhesion to the abiotic surface after 24 h and 48 h of growth, respectively. DncV also suppresses swimming and swarming motility posttranscriptional of the class 1 flagellum regulon gene flhD Purified DncV produced different cDNs, cyclic di-GMP, cyclic di-AMP, an unknown product(s), and the dominant species 3'3'-cGAMP. In vivo, only the 3'3'-cGAMP concentration was elevated upon short-term overexpression of dncV, making this work a first report on cGAMP production in E. coli Regulation of rdar biofilm formation and motility upon overexpression of untagged DncV in combination with three adjacent cotransferred gene products suggests a novel temperature-dependent cGAMP signaling module in E. coli ECOR31.IMPORTANCE The ability of bacteria to sense and respond to environmental signals is critical for survival. Bacteria use cyclic dinucleotides as second messengers to regulate a number of physiological processes, such as the fundamental life style transition between motility and sessility (biofilm formation). cGAMP, which is synthesized by a dinucleotide cyclase called DncV, is a newly discovered second messenger involved in virulence and chemotaxis in the Vibrio cholerae biovar El Tor causing the current 7th cholera pandemic. However, to what extent cGAMP exists and participates in physiological processes in other bacteria is still unknown. In this study, we found an elevated cGAMP level to possibly regulate biofilm formation and motility in the animal commensal E. coli strain ECOR31. Thus, we detected a novel role for cGAMP signaling in regulation of physiological processes other than those previously reported in proteobacterial species.
    • Microbiome yarns: the Global Phenotype-Genotype Survey: Episode II: laryngeal microbiota and vocal phenotypes (or diction and addiction).

      Timmis, Kenneth; Jebok, Franziska; Rohde, M; Molinari, Gabriella; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2019-03-01)
    • Comparative genomic analysis of eight novel haloalkaliphilic bacteriophages from Lake Elmenteita, Kenya.

      Akhwale, Juliah Khayeli; Rohde, M; Rohde, Christine; Bunk, Boyke; Spröer, Cathrin; Klenk, Hans-Peter; Boga, Hamadi Iddi; Wittmann, Johannes; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (PLOS, 2019-01-01)
      We report complete genome sequences of eight bacteriophages isolated from Haloalkaline Lake Elmenteita found on the floor of Kenyan Rift Valley. The bacteriophages were sequenced, annotated and a comparative genomic analysis using various Bioinformatics tools carried out to determine relatedness of the bacteriophages to each other, and to those in public databases. Basic genome properties like genome size, percentage coding density, number of open reading frames, percentage GC content and gene organizations revealed the bacteriophages had no relationship to each other. Comparison to other nucleotide sequences in GenBank database showed no significant similarities hence novel. At the amino acid level, phages of our study revealed mosaicism to genes with conserved domains to already described phages. Phylogenetic analyses of large terminase gene responsible for DNA packaging and DNA polymerase gene for replication further showed diversity among the bacteriophages. Our results give insight into diversity of bacteriophages in Lake Elmenteita and provide information on their evolution. By providing primary sequence information, this study not only provides novel sequences for biotechnological exploitation, but also sets stage for future studies aimed at better understanding of virus diversity and genomes from haloalkaline lakes in the Rift Valley.
    • A Highly Polymorphic Receptor Governs Many Distinct Self-Recognition Types within the Myxococcales Order.

      Cao, Pengbo; Wei, Xueming; Awal, Ram Prasad; Müller, Rolf; Wall, Daniel; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Society of Microbiology, 2019-02-12)
      Self-recognition underlies sociality in many group-living organisms. In bacteria, cells use various strategies to recognize kin to form social groups and, in some cases, to transition into multicellular life. One strategy relies on a single genetic locus that encodes a variable phenotypic tag (“greenbeard”) for recognizing other tag bearers. Previously, we discovered a polymorphic cell surface receptor called TraA that directs self-identification through homotypic interactions in the social bacterium Myxococcus xanthus. Recognition by TraA leads to cellular resource sharing in a process called outer membrane exchange (OME). A second gene in the traA operon, traB, is also required for OME but is not involved in recognition. Our prior studies of TraA identified only six recognition groups among closely related M. xanthus isolates. Here we hypothesize that the number of traA polymorphisms and, consequently, the diversity of recognition in wild isolates are much greater. To test this hypothesis, we expand the scope of TraA characterization to the order Myxococcales. From genomic sequences within the three suborders of Myxococcales, we identified 90 traA orthologs. Sequence analyses and functional characterization of traAB loci suggest that OME is well maintained among diverse myxobacterial taxonomic groups. Importantly, TraA orthologs are highly polymorphic within their variable domain, the region that confers selectivity in self-recognition. We experimentally defined 10 distinct recognition groups and, based on phylogenetic and experimental analyses, predicted >60 recognition groups among the 90 traA alleles. Taken together, our findings revealed a widespread greenbeard locus that mediates the diversity of self-recognition across the order Myxococcales.
    • Intracellular Streptococcal Uptake and Persistence: A Potential Cause of Erysipelas Recurrence.

      Jendoubi, Fatma; Rohde, M; Prinz, Jörg Christoph; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2019-01-01)
      Erysipelas is a severe streptococcal infection of the skin primarily spreading through the lymphatic vessels. Penicillin is the treatment of choice. The most common complication consists in relapses which occur in up to 40% or more of patients despite appropriate antibiotic treatment. They cause lymphatic damage resulting in irreversible lymphedema and ultimately elephantiasis nostras and lead to major health restrictions and high socio-medical costs. Prevention of relapses is an unmet need, because even long-term prophylactic penicillin application does eventually not reduce the risk of recurrence. In this article we assess risk factors and causes of erysipelas recurrence. A systematic literature search for clinical studies addressing potential causes and measures for prevention of erysipelas recurrence was combined with a review of experimental and clinical data assessing the ability and clinical relevance of streptococci for intracellular uptake and persistence. The literature review found that venous insufficiency, lymphedema, and intertrigo from fungal infections are considered to be major risk factors for recurrence of erysipelas but cannot adequately explain the high recurrence rate. As hitherto unrecognized likely cause of erysipelas relapses we identify the ability of streptococci for intracellular uptake into and persistence within epithelial and endothelial cells and macrophages. This creates intracellular streptococcal reservoirs out of reach of penicillins which do not reach sufficient bactericidal intracellular concentrations. Incomplete streptococcal elimination due to intracellular streptococcal persistence has been observed in various deep tissue infections and is considered as cause of relapsing streptococcal pharyngitis despite proper antibiotic treatment. It may also serves as endogenous infectious source of erysipelas relapses. We conclude that the current antibiotic treatment strategies and elimination of conventional risk factors employed in erysipelas management are insufficient to prevent erysipelas recurrence. The reactivation of streptococcal infection from intracellular reservoirs represents a plausible explanation for the frequent occurrence erysipelas relapses. Prevention of erysipelas relapses therefore demands for novel antibiotic strategies capable of eradicating intracellular streptococcal persistence.
    • Molecular typing of Streptococcus suis strains isolated from diseased and healthy pigs between 1996-2016.

      Prüfer, T Louise; Rohde, Judith; Verspohl, Jutta; Rohde, M; de Greeff, Astrid; Willenborg, Jörg; Valentin-Weigand, Peter; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PLOS, 2019-01-01)
      Streptococcus suis is an economically important pathogen of pigs as well as a zoonotic cause of human disease. Serotyping is used for further characterization of isolates; some serotypes seem to be more virulent and more widely spread than others. This study characterizes a collection of German field isolates of Streptococcus suis from pigs dating from 1996 to 2016 with respect to capsular genes (cps) specific for individual serotypes and pathotype by multiplex PCR and relates results to the clinical background of these isolates. The most prominent finding was the reduction in prevalence of serotype-2/serotype-1/2 among invasive isolates during this sampling period, which might be attributed to widely implemented autogenous vaccination programs in swine against serotype 2 in Germany. In diseased pigs (systemically ill; respiratory disease) isolates of serotype-1/serotype-14, serotype-2/serotype-1/2, serotype 3 to 5 and 7 to 9 were most frequent while in carrier isolates a greater variety of cps types was found. Serotype-1/serotype-14 seemed to be preferentially located in joints, serotype 4 and serotype 3 in the central nervous system, respectively. The virulence associated extracellular protein factor was almost exclusively associated with invasive serotype-1/serotype-14 and serotype-2/serotype-1/2 isolates. In contrast, lung isolates of serotype-2/serotype-1/2 mainly harbored the gene for muramidase-released protein. Serotype 4 and serotype 9 isolates from clinically diseased pigs most frequently carried the muramidase-released protein gene and the suilysin gene. When examined by transmission electron microscopy all but one of the isolates which were non-typable by molecular and serological methods showed various amounts of capsular material indicating potentially new serotypes among these isolates. Given the variety of cps types/serotypes detected in pigs, not only veterinarians but also medical doctors should consider other serotypes than just serotype 2 when investigating potential human cases of Streptococcus suis infection.
    • Day and Night: Metabolic Profiles and Evolutionary Relationships of Six Axenic Non-Marine Cyanobacteria.

      Will, Sabine Eva; Henke, Petra; Boedeker, Christian; Huang, Sixing; Brinkmann, Henner; Rohde, M; Jarek, Michael; Friedl, Thomas; Seufert, Steph; Schumacher, Martin; et al. (Oxford Academic, 2019-01-01)
      Cyanobacteria are dominant primary producers of various ecosystems and they colonize marine as well as freshwater and terrestrial habitats. On the basis of their oxygenic photosynthesis they are known to synthesize a high number of secondary metabolites, which makes them promising for biotechnological applications. State-of-the-art sequencing and analytical techniques and the availability of several axenic strains offer new opportunities for the understanding of the hidden metabolic potential of cyanobacteria beyond those of single model organisms. Here, we report comprehensive genomic and metabolic analyses of five non-marine cyanobacteria, that is, Nostoc sp. DSM 107007, Anabaena variabilis DSM 107003, Calothrix desertica DSM 106972, Chroococcidiopsis cubana DSM 107010, Chlorogloeopsis sp. PCC 6912, and the reference strain Synechocystis sp. PCC 6803. Five strains that are prevalently belonging to the order Nostocales represent the phylogenetic depth of clade B1, a morphologically highly diverse sister lineage of clade B2 that includes strain PCC 6803. Genome sequencing, light and scanning electron microscopy revealed the characteristics and axenicity of the analyzed strains. Phylogenetic comparisons showed the limits of the 16S rRNA gene for the classification of cyanobacteria, but documented the applicability of a multilocus sequence alignment analysis based on 43 conserved protein markers. The analysis of metabolites of the core carbon metabolism showed parts of highly conserved metabolic pathways as well as lineage specific pathways such as the glyoxylate shunt, which was acquired by cyanobacteria at least twice via horizontal gene transfer. Major metabolic changes were observed when we compared alterations between day and night samples. Furthermore, our results showed metabolic potential of cyanobacteria beyond Synechocystis sp. PCC 6803 as model organism and may encourage the cyanobacterial community to broaden their research to related organisms with higher metabolic activity in the desired pathways.
    • Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells.

      Raymond, B B A; Turnbull, L; Jenkins, C; Madhkoor, R; Schleicher, I; Uphoff, C C; Whitchurch, C B; Rohde, M; Djordjevic, S P; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-12-06)
      Enzootic pneumonia incurs major economic losses to pork production globally. The primary pathogen and causative agent, Mycoplasma hyopneumoniae, colonises ciliated epithelium and disrupts mucociliary function predisposing the upper respiratory tract to secondary pathogens. Alleviation of disease is reliant on antibiotics, vaccination, and sound animal husbandry, but none are effective at eliminating M. hyopneumoniae from large production systems. Sustainable pork production systems strive to lower reliance on antibiotics but lack of a detailed understanding of the pathobiology of M. hyopneumoniae has curtailed efforts to develop effective mitigation strategies. M. hyopneumoniae is considered an extracellular pathogen. Here we show that M. hyopneumoniae associates with integrin β1 on the surface of epithelial cells via interactions with surface-bound fibronectin and initiates signalling events that stimulate pathogen uptake into clathrin-coated vesicles (CCVs) and caveosomes. These early events allow M. hyopneumoniae to exploit an intracellular lifestyle by commandeering the endosomal pathway. Specifically, we show: (i) using a modified gentamicin protection assay that approximately 8% of M. hyopneumoniae cells reside intracellularly; (ii) integrin β1 expression specifically co-localises with the deposition of fibronectin precisely where M. hyopneumoniae cells assemble extracellularly; (iii) anti-integrin β1 antibodies block entry of M. hyopneumoniae into porcine cells; and (iv) M. hyopneumoniae survives phagolysosomal fusion, and resides within recycling endosomes that are trafficked to the cell membrane. Our data creates a paradigm shift by challenging the long-held view that M. hyopneumoniae is a strict extracellular pathogen and calls for in vivo studies to determine if M. hyopneumoniae can traffic to extrapulmonary sites in commercially-reared pigs.
    • Virulence factor-dependent basolateral invasion of choroid plexus epithelial cells by pathogenic Escherichia coli in vitro.

      Rose, Rebekah; Häuser, Svenja; Stump-Guthier, Carolin; Weiss, Christel; Rohde, M; Kim, Kwang Sik; Ishikawa, Hiroshi; Schroten, Horst; Schwerk, Christian; Adam, Rüdiger; et al. (Oxford Academic Press, 2018-11-21)
      Escherichia coli is the most common Gram-negative causative agent of neonatal meningitis and E. coli meningitis is associated with high morbidity and mortality. Previous research has been carried out with regard to the blood-brain barrier and thereby unveiled an assortment of virulence factors involved in E. coli meningitis. Little, however, is known about the role of the blood-cerebrospinal fluid (CSF) barrier (BCSFB), in spite of several studies suggesting that the choroid plexus (CP) is a possible entry point for E. coli into the CSF spaces. Here, we used a human CP papilloma (HIBCPP) cell line that was previously established as valid model for the study of the BCSFB. We show that E. coli invades HIBCPP cells in a polar fashion preferentially from the physiologically relevant basolateral side. Moreover, we demonstrate that deletion of outer membrane protein A, ibeA or neuDB genes results in decreased cell infection, while absence of fimH enhances invasion, although causing reduced adhesion to the apical side of HIBCPP cells. Our findings suggest that the BCSFB might constitute an entry point for E. coli into the central nervous system, and HIBCPP cells are a valuable tool for investigating E. coli entry of the BCSFB.
    • Iron Regulation in Clostridioides difficile.

      Berges, Mareike; Michel, Annika-Marisa; Lassek, Christian; Nuss, Aaron M; Beckstette, Michael; Dersch, Petra; Riedel, Katharina; Sievers, Susanne; Becher, Dörte; Otto, Andreas; et al. (2018-01-01)
      The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron and siderophore transporter genes were induced by Fur during low iron (0.2 μM) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some intermediates (phenylpyruvate, 2-oxo-isocaproate, 3-hydroxy-butyryl-CoA, crotonyl-CoA) accumulated, while end products like isocaproate and butyrate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB) of the F0F1-type was induced while the formation of a ATP-consuming, proton-pumping V-type ATPase (atpDBAFCEKI) was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. The fur mutant showed an increased sensitivity to vancomycin and polymyxin B. An intensive remodeling of the cell wall was observed, Polyamine biosynthesis (spe) was induced leading to an accumulation of spermine, spermidine, and putrescine. The fur mutant lost most of its flagella and motility. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of around 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, a significant replacement of iron requiring metabolic pathways and the restructuring of the cell surface for protection during the complex adaptation phase and was only partly directly regulated by Fur.
    • Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells.

      Tafreshi, Mona; Guan, Jyeswei; Gorrell, Rebecca J; Chew, Nicole; Xin, Yue; Deswaerte, Virginie; Rohde, M; Daly, Roger J; Peek, Richard M; Jenkins, Brendan J; et al. (Frontiers, 2018-01-01)
      The Gram-negative bacterium, Helicobacter pylori, causes chronic gastritis, peptic ulcers, and gastric cancer in humans. Although the gastric epithelium is the primary site of H. pylori colonization, H. pylori can gain access to deeper tissues. Concurring with this notion, H. pylori has been found in the vicinity of endothelial cells in gastric submucosa. Endothelial cells play crucial roles in innate immune response, wound healing and tumorigenesis. This study examines the molecular mechanisms by which H. pylori interacts with and triggers inflammatory responses in endothelial cells. We observed that H. pylori infection of primary human endothelial cells stimulated secretion of the key inflammatory cytokines, interleukin-6 (IL-6) and interleukin-8 (IL-8). In particular, IL-8, a potent chemokine and angiogenic factor, was secreted by H. pylori-infected endothelial cells to levels ~10- to 20-fold higher than that typically observed in H. pylori-infected gastric epithelial cells. These inflammatory responses were triggered by the H. pylori type IV secretion system (T4SS) and the T4SS-associated adhesin CagL, but not the translocation substrate CagA. Moreover, in contrast to integrin α5β1 playing an essential role in IL-8 induction by H. pylori upon infection of gastric epithelial cells, both integrin α5β1 and integrin αvβ3 were dispensable for IL-8 induction in H. pylori-infected endothelial cells. However, epidermal growth factor receptor (EGFR) is crucial for mediating the potent H. pylori-induced IL-8 response in endothelial cells. This study reveals a novel mechanism by which the H. pylori T4SS and its adhesin subunit, CagL, may contribute to H. pylori pathogenesis by stimulating the endothelial innate immune responses, while highlighting EGFR as a potential therapeutic target for controlling H. pylori-induced inflammation. Introduction
    • Microbiome yarns: The Global Phenotype-Genotype Survey: Episode I: all my worldly goods, including my microbiome, I thee endow.

      Timmis, Kenneth; Jebok, Franziska; Rohde, M; Molinari, Gabriella; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley and Sons, 2019-01-01)
    • Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model.

      Ullah, Sami; Seidel, Katja; Türkkan, Sibel; Warwas, Dawid Peter; Dubich, Tatyana; Rohde, Manfred; Hauser, Hansjörg; Behrens, Peter; Kirschning, Andreas; Köster, Mario; et al. (2018-12-23)
      Targeted delivery of drugs is a major challenge in treatment of diverse diseases. Systemically administered drugs demand high doses and are accompanied by poor selectivity and side effects on non-target cells. Here, we introduce a new principle for targeted drug delivery. It is based on macrophages as transporters for nanoparticle-coupled drugs as well as controlled release of drugs by hyperthermia mediated disruption of the cargo cells and simultaneous deliberation of nanoparticle-linked drugs. Hyperthermia is induced by an alternating electromagnetic field (AMF) that induces heat from silica-coated superparamagnetic iron oxide nanoparticles (SPIONs). We show proof-of-principle of controlled release by the simultaneous disruption of the cargo cells and the controlled, AMF induced release of a toxin, which was covalently linked to silica-coated SPIONs via a thermo-sensitive linker. Cells that had not been loaded with SPIONs remain unaffected. Moreover, in a 3D co-culture model we demonstrate specific killing of associated tumour cells when employing a ratio as low as 1:40 (SPION-loaded macrophage: tumour cells). Overall, our results demonstrate that AMF induced drug release from macrophage-entrapped nanoparticles is tightly controlled and may be an attractive novel strategy for targeted drug release.
    • On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility.

      Dolati, Setareh; Kage, Frieda; Mueller, Jan; Müsken, Mathias; Kirchner, Marieluise; Dittmar, Gunnar; Sixt, Michael; Rottner, Klemens; Falcke, Martin; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Amrican Society for Cell biology, 2018-11-01)
      Lamellipodia are flat membrane protrusions formed during mesenchymal motion. Polymerization at the leading edge assembles the actin filament network and generates protrusion force. How this force is supported by the network and how the assembly rate is shared between protrusion and network retrograde flow determines the protrusion rate. We use mathematical modeling to understand experiments changing the F-actin density in lamellipodia of B16-F1 melanoma cells by modulation of Arp2/3 complex activity or knockout of the formins FMNL2 and FMNL3. Cells respond to a reduction of density with a decrease of protrusion velocity, an increase in the ratio of force to filament number, but constant network assembly rate. The relation between protrusion force and tension gradient in the F-actin network and the density dependency of friction, elasticity, and viscosity of the network explain the experimental observations. The formins act as filament nucleators and elongators with differential rates. Modulation of their activity suggests an effect on network assembly rate. Contrary to these expectations, the effect of changes in elongator composition is much weaker than the consequences of the density change. We conclude that the force acting on the leading edge membrane is the force required to drive F-actin network retrograde flow.