Non-invasive, ratiometric determination of intracellular pH in Pseudomonas species using a novel genetically encoded indicator.
Name:
Arce-Rodriguez_et_al.pdf
Size:
1.449Mb
Format:
PDF
Description:
Open Access publication
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2019-07-01
Metadata
Show full item recordAbstract
The ability of Pseudomonas species to thrive in all major natural environments (i.e. terrestrial, freshwater and marine) is based on its exceptional capability to adapt to physicochemical changes. Thus, environmental bacteria have to tightly control the maintenance of numerous physiological traits across different conditions. The intracellular pH (pHi ) homoeostasis is a particularly important feature, since the pHi influences a large portion of the biochemical processes in the cell. Despite its importance, relatively few reliable, easy-to-implement tools have been designed for quantifying in vivo pHi changes in Gram-negative bacteria with minimal manipulations. Here we describe a convenient, non-invasive protocol for the quantification of the pHi in bacteria, which is based on the ratiometric fluorescent indicator protein PHP (pH indicator for Pseudomonas). The DNA sequence encoding PHP was thoroughly adapted to guarantee optimal transcription and translation of the indicator in Pseudomonas species. Our PHP-based quantification method demonstrated that pHi is tightly regulated over a narrow range of pH values not only in Pseudomonas, but also in other Gram-negative bacterial species such as Escherichia coli. The maintenance of the cytoplasmic pH homoeostasis in vivo could also be observed upon internal (e.g. redirection of glucose consumption pathways in P. putida) and external (e.g. antibiotic exposure in P. aeruginosa) perturbations, and the PHP indicator was also used to follow dynamic changes in the pHi upon external pH shifts. In summary, our work describes a reliable method for measuring pHi in Pseudomonas, allowing for the detailed investigation of bacterial pHi homoeostasis and its regulation.Citation
Microb Biotechnol. 2019 Jul;12(4):799-813. doi: 10.1111/1751-7915.13439. Epub. 2019 Jun 4.Affiliation
HZI, Helmholtz -Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.Publisher
Wiley OpenJournal
Microbial BiotechnologyPubMed ID
31162835Type
ArticleLanguage
enISSN
1751-7915ae974a485f413a2113503eed53cd6c53
10.1111/1751-7915.13439
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International
Related articles
- Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies.
- Authors: Lagendijk EL, Validov S, Lamers GE, de Weert S, Bloemberg GV
- Issue date: 2010 Apr
- Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy.
- Authors: Olsen KN, Budde BB, Siegumfeldt H, Rechinger KB, Jakobsen M, Ingmer H
- Issue date: 2002 Aug
- Imaging of Intracellular pH in Tumor Spheroids Using Genetically Encoded Sensor SypHer2.
- Authors: Zagaynova EV, Druzhkova IN, Mishina NM, Ignatova NI, Dudenkova VV, Shirmanova MV
- Issue date: 2017
- Optical Quantification of Intracellular pH in Drosophila melanogaster Malpighian Tubule Epithelia with a Fluorescent Genetically-encoded pH Indicator.
- Authors: Rossano AJ, Romero MF
- Issue date: 2017 Aug 11
- pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry.
- Authors: Wilks JC, Slonczewski JL
- Issue date: 2007 Aug