Identifying parameters to improve the reproducibility of transient gene expression in High Five cells.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Bleckmann, MarenSchürig, Margitta
Endres, Michelle
Samuels, Anke
Gebauer, Daniela
Konisch, Nadine
van den Heuvel, Joop
Issue Date
2019-01-01
Metadata
Show full item recordAbstract
Virus-free, transient gene expression (TGE) in High Five cells was recently presented as an efficient protein production method. However, published TGE protocols have not been standardized to a general protocol. Therefore, reproducibility and implementation of the method in other labs remains difficult. The aim of this study is to analyse the parameters determining the reproducibility of the TGE in insect cells. Here, we identified that using linear 40 kDa PEI instead of 25 kDa PEI was one of the most important aspects to improve TGE. Furthermore, DNA amount, DNA:PEI ratio, growth phase of the cells before transfection, passage number, the origin of the High-Five cell isolates and the type of cultivation medium were considered. Interestingly, a correlation of the passage number to the DNA content of single cells (ploidy) and to the transfection efficacy could be shown. The optimal conditions for critical parameters were used to establish a robust TGE method. Finally, we compared the achieved product yields in High Five cells using our improved TGE method with both the baculoviral expression system and TGE in the mammalian HEK293-6E cell line. In conclusion, the presented robust TGE protocol in High Five cells is easy to establish and produces ample amounts of high-quality recombinant protein, bridging the gap in expression level of this method to the well-established mammalian TGE in HEK293 cells as well as to the baculoviral expression vector system (BEVS).Citation
PLoS One. 2019 Jun 6;14(6):e0217878. doi: 10.1371/journal.pone.0217878. eCollection 2019.Affiliation
HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.Publisher
PLOSJournal
PLOS ONEPubMed ID
31170233Type
ArticleLanguage
enISSN
1932-6203ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0217878
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International