• Evolution of cytokine production capacity in ancient and modern European populations.

      Domínguez-Andrés, Jorge; Kuijpers, Yunus; Bakker, Olivier B; Jaeger, Martin; Xu, Cheng-Jian; Van der Meer, Jos Wm; Jakobsson, Mattias; Bertranpetit, Jaume; Joosten, Leo Ab; Li, Yang; et al. (eLife Sciences Publications, 2021-09-07)
      As our ancestors migrated throughout different continents, natural selection increased the presence of alleles advantageous in the new environments. Heritable variations that alter the susceptibility to diseases vary with the historical period, the virulence of the infections, and their geographical spread. In this study we built polygenic scores for heritable traits that influence the genetic adaptation in the production of cytokines and immune-mediated disorders, including infectious, inflammatory, and autoimmune diseases, and applied them to the genomes of several ancient European populations. We observed that the advent of the Neolithic was a turning point for immune-mediated traits in Europeans, favoring those alleles linked with the development of tolerance against intracellular pathogens and promoting inflammatory responses against extracellular microbes. These evolutionary patterns are also associated with an increased presence of traits related to inflammatory and auto-immune diseases.
    • Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease.

      Chu, Xiaojing; Jaeger, Martin; Beumer, Joep; Bakker, Olivier B; Aguirre-Gamboa, Raul; Oosting, Marije; Smeekens, Sanne P; Moorlag, Simone; Mourits, Vera P; Koeken, Valerie A C M; et al. (BMC, 2021-07-06)
      Background: Recent studies highlight the role of metabolites in immune diseases, but it remains unknown how much of this effect is driven by genetic and non-genetic host factors. Result: We systematically investigate circulating metabolites in a cohort of 500 healthy subjects (500FG) in whom immune function and activity are deeply measured and whose genetics are profiled. Our data reveal that several major metabolic pathways, including the alanine/glutamate pathway and the arachidonic acid pathway, have a strong impact on cytokine production in response to ex vivo stimulation. We also examine the genetic regulation of metabolites associated with immune phenotypes through genome-wide association analysis and identify 29 significant loci, including eight novel independent loci. Of these, one locus (rs174584-FADS2) associated with arachidonic acid metabolism is causally associated with Crohn's disease, suggesting it is a potential therapeutic target. Conclusion: This study provides a comprehensive map of the integration between the blood metabolome and immune phenotypes, reveals novel genetic factors that regulate blood metabolite concentrations, and proposes an integrative approach for identifying new disease treatment targets.