• Distinct Immune Imprints of Post-Liver Transplantation Hepatitis C Persist Despite Viral Clearance.

      Aregay, Amare; Engel, Bastian; Port, Kerstin; Vondran, Florian W R; Bremer, Birgit; Niehaus, Christian; Khera, Tanvi; Richter, Nicolas; Jaeckel, Elmar; Cornberg, Markus; et al. (Wiley, 2021-02-28)
      Recurrence or de novo infection of hepatitis C virus (HCV) after liver transplantation (LT) has been associated with progressive graft hepatitis that can be improved by treatment with novel direct-acting antivirals. Cases of rejection episodes have been described during and after HCV treatment. The evolution of innate and adaptive immune response during and after cure of HCV LT is unknown. We studied 74 protein biomarkers in the plasma of LT patients receiving antiviral therapy. In addition, deep immune phenotyping of both the myeloid and lymphoid immune cell subsets in peripheral blood mononuclear cells was performed. We found that LT patients with active HCV infection displayed distinct alterations of inflammatory protein biomarkers, such as C-X-Cmotif chemokine 10 (CXCL10), caspase 8, C-C motif chemokine 20 (CCL20), CCL19, interferon γ, CUB domain-containing protein 1 (CDCP1), interleukin (IL)-18R1, CXCL11, CCL3, IL8, IL12B, tumor necrosis factor-beta, CXCL6, osteoprotegerin, IL10, fms-related tyrosine kinase 3 ligand, hepatocyte growth factor, urokinase-type plasminogen activator, neurotrophin-3, CCL4, IL6, tumornecrosis factor receptor superfamily member 9, programmed death ligand 1, IL18, and monocyte chemotactic protein 1, and enrichment of peripheral immune cell subsets unlike patients without HCV infection who received transplants. Interestingly, patients who cleared HCV after LT did not normalize the altered inflammatory milieu nor did the peripheral immune cell subsets normalize to what would be seen in the absence of HCV recurrence. Overall, these data indicate that HCV-specific imprints on inflammatory analytes and immune cell subsets after LT are not completely normalized by therapy-induced HCV elimination. This is in line with the clinical observation that cure of HCV after LT did not trigger rejection episodes in many patients.
    • The impact of hepatitis B surface antigen on natural killer cells in patients with chronic hepatitis B virus infection.

      Du, Yanqin; Anastasiou, Olympia E; Strunz, Benedikt; Scheuten, Janina; Bremer, Birgit; Kraft, Anke; Kleinsimglinhaus, Karolina; Todt, Daniel; Broering, Ruth; Hardtke-Wolenski, Matthias; et al. (Wiley, 2021-04-01)
      Compared to the healthy controls, a reshaping of NK cell pool towards more CD56bright NK cells was observed during CHB infection. Importantly, NK cells in patients with low HBsAg levels (<100 IU/mL) displayed an activated phenotype with increased expression of activation makers CD38, granzyme B and proliferation marker Ki-67 while presenting with defective functional responses (MIP-1β, CD107a) at the same time. Furthermore, NK cell activation was negatively correlated with patient HBsAg levels while NK function correlated with patient age.
    • Performance of Roche qualitative HEV assay on the cobas 6800 platform for quantitative measurement of HEV RNA.

      Thodou, Viktoria; Bremer, Birgit; Anastasiou, Olympia E; Cornberg, Markus; Maasoumy, Benjamin; Wedemeyer, Heiner; CIIM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Elsevier, 2020-06-27)
      Background: Hepatitis E virus (HEV) infection is an increasingly recognized cause of acute and chronic hepatitis in high-income countries and is the most frequent cause of acute viral hepatitis in many European countries. Appropriate tools to detect and quantify HEV RNA are needed. This study aimed to evaluate the performance of the Roche cobas® HEV assay and compare it with the Fast Track Diagnostics (FTD) Hepatitis E RNA assay. Methods: HEV viral load determination and lower limit of detection (LOD, defined as the lowest amount of viral copies that could be detected in 95 % of repeats) were assessed using a WHO standard dilution panel, testing 240 samples of various concentrations. Reproducibility was tested at three different concentration levels, for different genotypes, and with different sample types (serum, plasma) in 30 samples. Sample stability was analyzed after three freeze/thaw cycles in 25 samples. Results: Cobas HEV assay showed a strong linear relationship between log of HEV WHO dilution series and Ct values over the reportable range from 200-5000 IU/mL HEV RNA copies. The amplification efficiency was higher than 92 %. LOD was 22 IU/mL (95 % CI: 17.4-31.8) and reproducibility tests showed a 100 % nucleic acid test (NAT) reactivity of cobas HEV for WHO dilution series (range 200-5000 IU/mL, n = 90). Cobas HEV assay detected all different HEV genotypes from biobank samples irrespective of the sample type. NAT reactivity of cobas HEV was not affected by three freeze/thaw cycles. Conclusions: Roche cobas HEV assay is a powerful NAT tool in terms of robustness, reproducibility and linearity. It is a feasible alternative for high-volume testing.
    • Significant compartment-specific impact of different RNA extraction methods and PCR assays on the sensitivity of hepatitis E virus detection.

      Behrendt, Patrick; Bremer, Birgit; Todt, Daniel; Steinmann, Eike; Manns, Michael Peter; Cornberg, Markus; Wedemeyer, Heiner; Maasoumy, Benjamin; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Wiley, 2021-03-22)
      We determined the limit of detection of the RealStar HEV RT-PCR V2.0 Kit (altona Diagnostics, RS) utilizing 3 RNA extraction methods (COBAS® AmpliPrep Total Nucleic Acid Isolation Kit, TNAi Roche; MagNA Pure 96 DNA, Viral NA SV Kit, MgP; QIAamp Viral RNA mini Kit Qiagen; VRK) in plasma and stool. The most sensitive method was evaluated in a total of 307 longitudinal samples of patients with HEV infection (acute = 18/chronic = 36) and compared to results with the former diagnostic standard of our centre (TNAi/FastTrack Diagnostic; FTD).