• Cerebrospinal fluid IL-1β is elevated in tuberculous meningitis patients but not associated with mortality.

      Koeken, Valerie A C M; Ganiem, Ahmad R; Dian, Sofiati; Ruslami, Rovina; Chaidir, Lidya; Netea, Mihai G; Kumar, Vinod; Alisjahbana, Bachti; van Crevel, Reinout; van Laarhoven, Arjan; et al. (Elsevier, 2020-07-30)
      Background & aims: Hepatocellular carcinoma (HCC) is a cancer with multiple aetiologies and widespread prevalence. Largely refractory to current treatments, HCC is the fourth leading cause of cancer-related deaths worldwide. MicroRNAs (miRNAs) are important regulators in HCCs. We aimed to identify tumour suppressor miRNAs during tumour regression in a conditional c-MYC-driven mouse model (LT2/MYC) of HCC, and to evaluate their therapeutic potential for HCC treatment. Methods: We performed miRNA expression profiling of developed and regressing LT2/MYC tumours and in-depth in vitro gain- and loss-of-function analyses. The effect of adeno-associated virus (AAV) vector-mediated miR-342-3p treatment was evaluated in 3 HCC mouse models. Results: We identified miR-342-3p as a tumour suppressor miRNA in HCC, with increased expression in regressing tumours. Forced miR-342-3p expression in hepatoma cells showed significantly decreased cell proliferation, migration, and colony formation. In vivo administration of AAV-miR-342-3p led to significant attenuation of tumour development and increased overall survival. We identified monocarboxylic acid transporter 1 (MCT1) as a bona fide target of miR-342-3p in HCC. We show that the tumour suppressor role of miR-342-3p is executed partly by modulating the lactate transport function of MCT1. Importantly, we find miR-342-3p downregulated in tumours from patients with HCC compared with matched non-tumour tissues, inversely correlating with MCT1 expression. We observed similar findings in TCGA-LIHC data. Conclusions: In our study, we identified and validated miR-342-3p as a tumour suppressor miRNA in HCC. We demonstrated its therapeutic efficacy in significantly attenuating tumour development, and prolonging survival, in different HCC mouse models. Identification of miR-342-3p as an effective tumour suppressor opens a therapeutic avenue for miRNA-mediated attenuation of HCC development. Lay summary: Hepatocellular carcinoma (HCC), the most common type of liver cancer, affects diverse populations and has a global impact, being the fourth leading cause of cancer deaths worldwide. There are currently no systemic therapies for HCC that can significantly prolong long-term survival. Thus, novel effective treatment options are urgently required. To understand the molecular basis of tumour regression, we compared tumours and regressing liver tumours in mice. We show that a small non-coding miRNA, miR-342-3p, is a tumour suppressor in HCC. Expression of miR-342-3p is low in tumours and high in regressing tumours. When miR-342-3p is delivered to mouse livers with HCC, it can significantly slow down liver tumour development and improve survival. Our study highlights the promising therapeutic potential of miR-342-3p intervention in HCC.