• Glutathione Metabolism Contributes to the Induction of Trained Immunity.

      Ferreira, Anaisa V; Koeken, Valerie A C M; Matzaraki, Vasiliki; Kostidis, Sarantos; Alarcon-Barrera, Juan Carlos; de Bree, L Charlotte J; Moorlag, Simone J C F M; Mourits, Vera P; Novakovic, Boris; Giera, Martin A; et al. (MDPI, 2021-04-21)
      The innate immune system displays heterologous memory characteristics, which are characterized by stronger responses to a secondary challenge. This phenomenon termed trained immunity relies on epigenetic and metabolic rewiring of innate immune cells. As reactive oxygen species (ROS) production has been associated with the trained immunity phenotype, we hypothesized that the increased ROS levels and the main intracellular redox molecule glutathione play a role in the induction of trained immunity. Here we show that pharmacological inhibition of ROS in an in vitro model of trained immunity did not influence cell responsiveness; the modulation of glutathione levels reduced pro-inflammatory cytokine production in human monocytes. Single nucleotide polymorphisms (SNPs) in genes involved in glutathione metabolism were found to be associated with changes in pro-inflammatory cytokine production capacity upon trained immunity. Also, plasma glutathione concentrations were positively associated with ex vivo IL-1β production, a biomarker of trained immunity, produced by monocytes of BCG-vaccinated individuals. In conclusion, glutathione metabolism is involved in the induction of trained immunity, and future studies are warranted to explore its functional consequences in human diseases.
    • HBV-RNA Co-amplification May Influence HBV DNA Viral Load Determination.

      Maasoumy, Benjamin; Geretti, Anna Maria; Frontzek, André; Austin, Harrison; Aretzweiler, Gudrun; Garcia-Álvarez, Monica; Leuchter, Susanne; Simon, Christian O; Marins, Ed G; Canchola, Jesse A; et al. (Wiley, 2020-05-26)
      Despite effective hepatitis B virus (HBV)-DNA suppression, HBV RNA can circulate in patients receiving nucleoside/nucleotide analogues (NAs). Current assays quantify HBV DNA by either real-time polymerase chain reaction (PCR), which uses DNA polymerase, or transcription-mediated amplification, which uses reverse-transcriptase (RT) and RNA polymerase. We assessed the effect of RT capability on HBV-DNA quantification in samples from three cohorts, including patients with quantified HBV RNA. We compared the HBV-DNA levels by real-time PCR (cobas HBV, Roche 6800/8800; Xpert HBV, Cepheid), transcription-mediated amplification (Aptima HBV, Hologic), and real-time PCR with added RT capability (cobas HBV+RT). In the first cohort (n = 45) followed over 192 weeks of NA therapy, on-treatment HBV-DNA levels were higher with cobas HBV+RT than cobas HBV (mean difference: 0.14 log10 IU/mL). In a second cohort (n = 50) followed over 96 weeks of NA therapy, HBV-DNA viral load was significantly higher with the cobas HBV+RT and Aptima HBV compared with the cobas HBV test at all time points after initiation of NA therapy (mean difference: 0.65-1.16 log10 IU/mL). A clinically significant difference was not detected between the assays at baseline. In a third cohort (n = 53), after a median of 2.2 years of NA therapy, we detected HBV RNA (median 5.6 log10 copies/mL) in 23 patients (43.4%). Median HBV-DNA levels by Aptima HBV were 2.4 versus less than 1 log10 IU/mL in samples with HBV RNA and without HBV RNA, respectively (P = 0.0006). In treated patients with HBV RNA, Aptima HBV measured higher HBV-DNA levels than Xpert HBV and cobas HBV. Conclusion: Tests including an RT step may overestimate HBV DNA, particularly in samples with low viral loads as a result of NA therapy. This overestimation is likely due to amplification of HBV RNA and may have an impact on clinical decisions.
    • Host immune genetic variations influence the risk of developing acute myeloid leukaemia: results from the NuCLEAR consortium.

      Sánchez-Maldonado, J M; Campa, D; Springer, J; Badiola, J; Niazi, Y; Moñiz-Díez, A; Hernández-Mohedo, F; González-Sierra, P; Ter Horst, R; Macauda, A; et al. (Springer Nature, 2020-07-16)
      The purpose of this study was to conduct a two-stage case control association study including 654 acute myeloid leukaemia (AML) patients and 3477 controls ascertained through the NuCLEAR consortium to evaluate the effect of 27 immune-related single nucleotide polymorphisms (SNPs) on AML risk. In a pooled analysis of cohort studies, we found that carriers of the IL13rs1295686A/A genotype had an increased risk of AML (PCorr = 0.0144) whereas carriers of the VEGFArs25648T allele had a decreased risk of developing the disease (PCorr = 0.00086). In addition, we found an association of the IL8rs2227307 SNP with a decreased risk of developing AML that remained marginally significant after multiple testing (PCorr = 0.072). Functional experiments suggested that the effect of the IL13rs1295686 SNP on AML risk might be explained by its role in regulating IL1Ra secretion that modulates AML blast proliferation. Likewise, the protective effect of the IL8rs2227307 SNP might be mediated by TLR2-mediated immune responses that affect AML blast viability, proliferation and chemorresistance. Despite the potential interest of these results, additional functional studies are still warranted to unravel the mechanisms by which these variants modulate the risk of AML. These findings suggested that IL13, VEGFA and IL8 SNPs play a role in modulating AML risk.
    • The impact of hepatitis B surface antigen on natural killer cells in patients with chronic hepatitis B virus infection.

      Du, Yanqin; Anastasiou, Olympia E; Strunz, Benedikt; Scheuten, Janina; Bremer, Birgit; Kraft, Anke; Kleinsimglinhaus, Karolina; Todt, Daniel; Broering, Ruth; Hardtke-Wolenski, Matthias; et al. (Wiley, 2021-04-01)
      Compared to the healthy controls, a reshaping of NK cell pool towards more CD56bright NK cells was observed during CHB infection. Importantly, NK cells in patients with low HBsAg levels (<100 IU/mL) displayed an activated phenotype with increased expression of activation makers CD38, granzyme B and proliferation marker Ki-67 while presenting with defective functional responses (MIP-1β, CD107a) at the same time. Furthermore, NK cell activation was negatively correlated with patient HBsAg levels while NK function correlated with patient age.
    • Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease.

      Chu, Xiaojing; Jaeger, Martin; Beumer, Joep; Bakker, Olivier B; Aguirre-Gamboa, Raul; Oosting, Marije; Smeekens, Sanne P; Moorlag, Simone; Mourits, Vera P; Koeken, Valerie A C M; et al. (BMC, 2021-07-06)
      Background: Recent studies highlight the role of metabolites in immune diseases, but it remains unknown how much of this effect is driven by genetic and non-genetic host factors. Result: We systematically investigate circulating metabolites in a cohort of 500 healthy subjects (500FG) in whom immune function and activity are deeply measured and whose genetics are profiled. Our data reveal that several major metabolic pathways, including the alanine/glutamate pathway and the arachidonic acid pathway, have a strong impact on cytokine production in response to ex vivo stimulation. We also examine the genetic regulation of metabolites associated with immune phenotypes through genome-wide association analysis and identify 29 significant loci, including eight novel independent loci. Of these, one locus (rs174584-FADS2) associated with arachidonic acid metabolism is causally associated with Crohn's disease, suggesting it is a potential therapeutic target. Conclusion: This study provides a comprehensive map of the integration between the blood metabolome and immune phenotypes, reveals novel genetic factors that regulate blood metabolite concentrations, and proposes an integrative approach for identifying new disease treatment targets.
    • Leitlinienreport zur aktualisierten S3-Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) zur Prophylaxe, Diagnostik und Therapie der Hepatitis-B-Virusinfektion

      Jansen, Petra Lynen; van Leeuwen, Pia; Sandmann, Lisa; Cornberg, Markus; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Thieme, 2021-07-12)
      [No abstract available]
    • Mendelian randomization while jointly modeling cis genetics identifies causal relationships between gene expression and lipids.

      van der Graaf, Adriaan; Claringbould, Annique; Rimbert, Antoine; Westra, Harm-Jan; Li, Yang; Wijmenga, Cisca; Sanna, Serena; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Nature publishing group (NPG), 2020-10-01)
      Inference of causality between gene expression and complex traits using Mendelian randomization (MR) is confounded by pleiotropy and linkage disequilibrium (LD) of gene-expression quantitative trait loci (eQTL). Here, we propose an MR method, MR-link, that accounts for unobserved pleiotropy and LD by leveraging information from individual-level data, even when only one eQTL variant is present. In simulations, MR-link shows false-positive rates close to expectation (median 0.05) and high power (up to 0.89), outperforming all other tested MR methods and coloc. Application of MR-link to low-density lipoprotein cholesterol (LDL-C) measurements in 12,449 individuals with expression and protein QTL summary statistics from blood and liver identifies 25 genes causally linked to LDL-C. These include the known SORT1 and ApoE genes as well as PVRL2, located in the APOE locus, for which a causal role in liver was not known. Our results showcase the strength of MR-link for transcriptome-wide causal inferences.
    • Multi-Omics Approaches in Immunological Research.

      Chu, Xiaojing; Zhang, Bowen; Koeken, Valerie A C M; Gupta, Manoj Kumar; Li, Yang; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (2021-06-11)
      The immune system plays a vital role in health and disease, and is regulated through a complex interactive network of many different immune cells and mediators. To understand the complexity of the immune system, we propose to apply a multi-omics approach in immunological research. This review provides a complete overview of available methodological approaches for the different omics data layers relevant for immunological research, including genetics, epigenetics, transcriptomics, proteomics, metabolomics, and cellomics. Thereafter, we describe the various methods for data analysis as well as how to integrate different layers of omics data. Finally, we discuss the possible applications of multi-omics studies and opportunities they provide for understanding the complex regulatory networks as well as immune variation in various immune-related diseases.
    • Performance of Roche qualitative HEV assay on the cobas 6800 platform for quantitative measurement of HEV RNA.

      Thodou, Viktoria; Bremer, Birgit; Anastasiou, Olympia E; Cornberg, Markus; Maasoumy, Benjamin; Wedemeyer, Heiner; CIIM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Elsevier, 2020-06-27)
      Background: Hepatitis E virus (HEV) infection is an increasingly recognized cause of acute and chronic hepatitis in high-income countries and is the most frequent cause of acute viral hepatitis in many European countries. Appropriate tools to detect and quantify HEV RNA are needed. This study aimed to evaluate the performance of the Roche cobas® HEV assay and compare it with the Fast Track Diagnostics (FTD) Hepatitis E RNA assay. Methods: HEV viral load determination and lower limit of detection (LOD, defined as the lowest amount of viral copies that could be detected in 95 % of repeats) were assessed using a WHO standard dilution panel, testing 240 samples of various concentrations. Reproducibility was tested at three different concentration levels, for different genotypes, and with different sample types (serum, plasma) in 30 samples. Sample stability was analyzed after three freeze/thaw cycles in 25 samples. Results: Cobas HEV assay showed a strong linear relationship between log of HEV WHO dilution series and Ct values over the reportable range from 200-5000 IU/mL HEV RNA copies. The amplification efficiency was higher than 92 %. LOD was 22 IU/mL (95 % CI: 17.4-31.8) and reproducibility tests showed a 100 % nucleic acid test (NAT) reactivity of cobas HEV for WHO dilution series (range 200-5000 IU/mL, n = 90). Cobas HEV assay detected all different HEV genotypes from biobank samples irrespective of the sample type. NAT reactivity of cobas HEV was not affected by three freeze/thaw cycles. Conclusions: Roche cobas HEV assay is a powerful NAT tool in terms of robustness, reproducibility and linearity. It is a feasible alternative for high-volume testing.
    • Pilot Study Using Machine Learning to Identify Immune Profiles for the Prediction of Early Virological Relapse After Stopping Nucleos(t)ide Analogues in HBeAg-Negative CHB.

      Wübbolding, Maximilian; Lopez Alfonso, Juan Carlos; Lin, Chun-Yen; Binder, Sebastian; Falk, Christine; Debarry, Jennifer; Gineste, Paul; Kraft, Anke R M; Chien, Rong-Nan; Maasoumy, Benjamin; et al. (Wiley, 2020-11-05)
      Treatment with nucleos(t)ide analogues (NAs) may be stopped after 1-3 years of hepatitis B virus DNA suppression in hepatitis B e antigen (HBeAg)-negative patients according to Asian Pacific Association for the Study of Liver and European Association for the Study of Liver guidelines. However, virological relapse (VR) occurs in most patients. We aimed to analyze soluble immune markers (SIMs) and use machine learning to identify SIM combinations as predictor for early VR after NA discontinuation. A validation cohort was used to verify the predictive power of the SIM combination. In a post hoc analysis of a prospective, multicenter therapeutic vaccination trial (ABX-203, NCT02249988), hepatitis B surface antigen, hepatitis B core antigen, and 47 SIMs were repeatedly determined before NA was stopped. Forty-three HBeAg-negative patients were included. To detect the highest predictive constellation of host and viral markers, a supervised machine learning approach was used. Data were validated in a different cohort of 49 patients treated with entecavir. VR (hepatitis B virus DNA ≥ 2,000 IU/mL) occurred in 27 patients. The predictive value for VR of single SIMs at the time of NA stop was best for interleukin (IL)-2, IL-17, and regulated on activation, normal T cell expressed and secreted (RANTES/CCL5) with a maximum area under the curve of 0.65. Hepatitis B core antigen had a higher predictive power than hepatitis B surface antigen but lower than the SIMs. A supervised machine-learning algorithm allowed a remarkable improvement of early relapse prediction in patients treated with entecavir. The combination of IL-2, monokine induced by interferon γ (MIG)/chemokine (C-C motif) ligand 9 (CCL9), RANTES/CCL5, stem cell factor (SCF), and TNF-related apoptosis-inducing ligand (TRAIL) was reliable in predicting VR (0.89; 95% confidence interval: 0.5-1.0) and showed viable results in the validation cohort (0.63; 0.1-0.99). Host immune markers such as SIMs appear to be underestimated in guiding treatment cessation in HBeAg-negative patients. Machine learning can help find predictive SIM patterns that allow a precise identification of patients particularly suitable for NA cessation.
    • Polymorphisms within Autophagy-Related Genes Influence the Risk of Developing Colorectal Cancer: A Meta-Analysis of Four Large Cohorts.

      Sainz, Juan; García-Verdejo, Francisco José; Martínez-Bueno, Manuel; Kumar, Abhishek; Sánchez-Maldonado, José Manuel; Díez-Villanueva, Anna; Vodičková, Ludmila; Vymetálková, Veronika; Martin Sánchez, Vicente; Da Silva Filho, Miguel Inacio; et al. (MDPI, 2021-03-12)
      The role of genetic variation in autophagy-related genes in modulating autophagy and cancer is poorly understood. Here, we comprehensively investigated the association of autophagy-related variants with colorectal cancer (CRC) risk and provide new insights about the molecular mechanisms underlying the associations. After meta-analysis of the genome-wide association study (GWAS) data from four independent European cohorts (8006 CRC cases and 7070 controls), two loci, DAPK2 (p = 2.19 × 10-5) and ATG5 (p = 6.28 × 10-4) were associated with the risk of CRC. Mechanistically, the DAPK2rs11631973G allele was associated with IL1 β levels after the stimulation of peripheral blood mononuclear cells (PBMCs) with Staphylococcus aureus (p = 0.002), CD24 + CD38 + CD27 + IgM + B cell levels in blood (p = 0.0038) and serum levels of en-RAGE (p = 0.0068). ATG5rs546456T allele was associated with TNF α and IL1 β levels after the stimulation of PBMCs with LPS (p = 0.0088 and p = 0.0076, respectively), CD14+CD16- cell levels in blood (p = 0.0068) and serum levels of CCL19 and cortisol (p = 0.0052 and p = 0.0074, respectively). Interestingly, no association with autophagy flux was observed. These results suggested an effect of the DAPK2 and ATG5 loci in the pathogenesis of CRC, likely through the modulation of host immune responses.
    • Polymorphisms within the and Loci Influence the Risk of Developing Invasive Aspergillosis: A Two-Stage Case Control Study in the Context of the aspBIOmics Consortium.

      ánchez-Maldonado, Jose Manuel; Moñiz-Díez, Ana; Rob Ter Horst, Daniele Campa; Cabrera-Serrano, Antonio José; Garrido-Collado, María Del Pilar; Hernández-Mohedo, Fracisca; Fernández-Puerta, Laura; López-Nevot, , Miguel Ángel; Cunha, Ctistina; González-Sierra, Pedro Antonio; et al. (MDPI, 2020-12-23)
      Here, we assessed whether 36 single nucleotide polymorphisms (SNPs) within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis (IA). We conducted a two-stage case control study including 911 high-risk patients diagnosed with hematological malignancies that were ascertained through the aspBIOmics consortium. The meta-analysis of the discovery and replication populations revealed that carriers of the TNFSF4rs7526628T/T genotype had a significantly increased risk of developing IA (p = 0.00022). We also found that carriers of the TNFSF4rs7526628T allele showed decreased serum levels of TNFSF14 protein (p = 0.0027), and that their macrophages had a decreased fungicidal activity (p = 0.048). In addition, we observed that each copy of the MAPKAPK2rs12137965G allele increased the risk of IA by 60% (p = 0.0017), whereas each copy of the MAPKAPK2rs17013271T allele was estimated to decrease the risk of developing the disease (p = 0.0029). Mechanistically, we found that carriers of the risk MAPKAPK2rs12137965G allele showed increased numbers of CD38+IgM-IgD- plasmablasts in blood (p = 0.00086), whereas those harboring two copies of the allele had decreased serum concentrations of thymic stromal lymphopoietin (p = 0.00097). Finally, we also found that carriers of the protective MAPKAPK2rs17013271T allele had decreased numbers of CD27-IgM-IgD- B cells (p = 0.00087) and significantly lower numbers of CD14+ and CD14+CD16- cells (p = 0.00018 and 0.00023). Altogether, these results suggest a role of the TNFSF4 and MAPKAPK2 genes in determining IA risk.
    • Protected or not protected, that is the question - First data on COVID-19 vaccine responses in patients with NAFLD and liver transplant recipients.

      Eberhardt, Christiane S; Cornberg, Markus; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (2021-05-25)
      [no abstract available]
    • Reaching the Unreachable: Strategies for HCV Eradication in Patients With Refractory Opioid Addiction-A Real-world Experience.

      Sandmann, Lisa; Deppe, Julian; Beier, Christoph; Ohlendorf, Valerie; Schneider, Julia; Wedemeyer, Heiner; Wedegärtner, Felix; Cornberg, Markus; Maasoumy, Benjamin; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (2021-06-17)
    • Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease.

      Noz, Marlies P; Bekkering, Siroon; Groh, Laszlo; Nielen, Tim Mj; Lamfers, Evert Jp; Schlitzer, Andreas; El Messaoudi, Saloua; van Royen, Niels; Huys, Erik Hjpg; Preijers, Frank Wmb; et al. (elifesciences.org, 2020-11-10)
      Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and monocyte-related pathways. These results show that in patients with atherosclerosis, activation of innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities for novel treatment strategies.
    • Residential PM exposure and the nasal methylome in children.

      Sordillo, Joanne E; Cardenas, Andres; Qi, Cancan; Rifas-Shiman, Sheryl L; Coull, Brent; Luttmann-Gibson, Heike; Schwartz, Joel; Kloog, Itai; Hivert, Marie-France; DeMeo, Dawn L; et al. (Elsevier, 2021-04-16)
      Rationale: PM2.5-induced adverse effects on respiratory health may be driven by epigenetic modifications in airway cells. The potential impact of exposure duration on epigenetic alterations in the airways is not yet known. Objectives: We aimed to study associations of fine particulate matter PM2.5 exposure with DNA methylation in nasal cells. Methods: We conducted nasal epigenome-wide association analyses within 503 children from Project Viva (mean age 12.9 y), and examined various exposure durations (1-day, 1-week, 1-month, 3-months and 1-year) prior to nasal sampling. We used residential addresses to estimate average daily PM2.5 at 1 km resolution. We collected nasal swabs from the anterior nares and measured DNA methylation (DNAm) using the Illumina MethylationEPIC BeadChip. We tested 719,075 high quality autosomal CpGs using CpG-by-CpG and regional DNAm analyses controlling for multiple comparisons, and adjusted for maternal education, household smokers, child sex, race/ethnicity, BMI z-score, age, season at sample collection and cell-type heterogeneity. We further corrected for bias and genomic inflation. We tested for replication in a cohort from the Netherlands (PIAMA). Results: In adjusted analyses, we found 362 CpGs associated with 1-year PM2.5 (FDR < 0.05), 20 CpGs passing Bonferroni correction (P < 7.0x10-8) and 10 Differentially Methylated Regions (DMRs). In 445 PIAMA participants (mean age 16.3 years) 11 of 203 available CpGs replicated at P < 0.05. We observed differential DNAm at/near genes implicated in cell cycle, immune and inflammatory responses. There were no CpGs or regions associated with PM2.5 levels at 1-day, 1-week, or 1-month prior to sample collection, although 2 CpGs were associated with past 3-month PM2.5. Conclusion: We observed wide-spread DNAm variability associated with average past year PM2.5 exposure but we did not detect associations with shorter-term exposure. Our results suggest that nasal DNAm marks reflect chronic air pollution exposure.
    • Resolving trained immunity with systems biology.

      Koeken, Valerie A C M; van Crevel, Reinout; Netea, Mihai G; Li, Yang; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Wiley-VCH, 2021-02-11)
      Trained immunity is characterized by long-term functional reprogramming of innate immune cells following challenge with pathogens or microbial ligands during infection or vaccination. This cellular reprogramming leads to increased responsiveness upon re-stimulation, and is mediated through epigenetic and metabolic modifications. In this review, we describe how molecular mechanisms underlying trained immunity, for example induced by β-glucan or Bacille Calmette-Guérin (BCG) vaccination, can be investigated by using and integrating different layers of information, including genome, epigenome, transcriptome, proteome, metabolome, microbiome, immune cell phenotyping and function. We also describe the most commonly used experimental and computational techniques. Finally, we provide a number of examples of how a systems biology approach was applied to study trained immunity to understand inter-individual variation or the complex interplay between molecular layers. In conclusion, trained immunity represents an opportunity for regulating innate immune function, and understanding the complex interplay of mechanisms that mediate trained immunity might enable us to employ it as a clinical tool in the future. This article is protected by copyright. All rights reserved.
    • The role of sirtuin 1 on the induction of trained immunity.

      Mourits, Vera P; Helder, Leonie S; Matzaraki, Vasiliki; Koeken, Valerie A C M; Groh, Laszlo; de Bree, L Charlotte J; Moorlag, Simone J C F M; van der Heijden, Charlotte D C C; Keating, Samuel T; van Puffelen, Jelmer H; et al. (Elsevier, 2021-06-12)
      Sirtuin 1 (SIRT1) has been described to modify immune responses by modulation of gene transcription. As transcriptional reprogramming is the molecular substrate of trained immunity, a de facto innate immune memory, we investigated the role of SIRT1 in the induction of trained immunity. We identified various SIRT1 genetic single nucleotide polymorphisms affecting innate and adaptive cytokine production of human peripheral blood mononuclear cells (PBMCs) in response to various stimuli on the one hand, and in vitro induction of trained immunity on the other hand. Furthermore, inhibition of SIRT1 upregulated pro-inflammatory innate cytokine production upon stimulation of PBMCs. However, inhibition of SIRT1 in vitro had no effect on cytokine responses upon induction of trained immunity, while activation of SIRT1 mildly modified trained immunity responses. In conclusion, SIRT1 modifies innate cytokine production by PBMCs in response to various microbes, but has only a secondary role for BCG and β-glucan-induced trained immunity responses.
    • S1 guideline for the care of liver transplant recipients during the COVID-19 pandemic. AWMF Registry No. 021-031 - Status: January 7, 2021

      Tacke, Frank; Cornberg, Markus; Sterneck, Martina; Trebicka, Jonel; Settmacher, Utz; Bechstein, Wolf Otto; Berg, Thomas; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Thieme, 2021-04-01)
      [No abstract listed]
    • S3-Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) zur Prophylaxe, Diagnostik und Therapie der Hepatitis-B-Virusinfektion – (AWMF-Register-Nr. 021-11)

      Cornberg, Markus; Sandmann, Lisa; Protzer, Ulrike; Niederau, Claus; Tacke, Frank; Berg, Thomas; Glebe, Dieter; Jilg, Wolfgang; Wedemeyer, Heiner; Wirth, Stefan; et al. (Thieme, 2021-07-12)
      [No abstract available]