• BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment.

      Cirovic, Branko; de Bree, L Charlotte J; Groh, Laszlo; Blok, Bas A; Chan, Joyce; van der Velden, Walter J F M; Bremmers, M E J; van Crevel, Reinout; Händler, Kristian; Picelli, Simone; et al. (Elsevier (Cell Press), 2020-06-09)
      Induction of trained immunity by Bacille-Calmette-Guérin (BCG) vaccination mediates beneficial heterologous effects, but the mechanisms underlying its persistence and magnitude remain elusive. In this study, we show that BCG vaccination in healthy human volunteers induces a persistent transcriptional program connected to myeloid cell development and function within the hematopoietic stem and progenitor cell (HSPC) compartment in the bone marrow. We identify hepatic nuclear factor (HNF) family members 1a and b as crucial regulators of this transcriptional shift. These findings are corroborated by higher granulocyte numbers in BCG-vaccinated infants, HNF1 SNP variants that correlate with trained immunity, and elevated serum concentrations of the HNF1 target alpha-1 antitrypsin. Additionally, transcriptomic HSPC remodeling was epigenetically conveyed to peripheral CD14+ monocytes, displaying an activated transcriptional signature three months after BCG vaccination. Taken together, transcriptomic, epigenomic, and functional reprogramming of HSPCs and peripheral monocytes is a hallmark of BCG-induced trained immunity in humans.
    • Cerebrospinal fluid IL-1β is elevated in tuberculous meningitis patients but not associated with mortality.

      Koeken, Valerie A C M; Ganiem, Ahmad R; Dian, Sofiati; Ruslami, Rovina; Chaidir, Lidya; Netea, Mihai G; Kumar, Vinod; Alisjahbana, Bachti; van Crevel, Reinout; van Laarhoven, Arjan; et al. (Elsevier, 2020-07-30)
      Background & aims: Hepatocellular carcinoma (HCC) is a cancer with multiple aetiologies and widespread prevalence. Largely refractory to current treatments, HCC is the fourth leading cause of cancer-related deaths worldwide. MicroRNAs (miRNAs) are important regulators in HCCs. We aimed to identify tumour suppressor miRNAs during tumour regression in a conditional c-MYC-driven mouse model (LT2/MYC) of HCC, and to evaluate their therapeutic potential for HCC treatment. Methods: We performed miRNA expression profiling of developed and regressing LT2/MYC tumours and in-depth in vitro gain- and loss-of-function analyses. The effect of adeno-associated virus (AAV) vector-mediated miR-342-3p treatment was evaluated in 3 HCC mouse models. Results: We identified miR-342-3p as a tumour suppressor miRNA in HCC, with increased expression in regressing tumours. Forced miR-342-3p expression in hepatoma cells showed significantly decreased cell proliferation, migration, and colony formation. In vivo administration of AAV-miR-342-3p led to significant attenuation of tumour development and increased overall survival. We identified monocarboxylic acid transporter 1 (MCT1) as a bona fide target of miR-342-3p in HCC. We show that the tumour suppressor role of miR-342-3p is executed partly by modulating the lactate transport function of MCT1. Importantly, we find miR-342-3p downregulated in tumours from patients with HCC compared with matched non-tumour tissues, inversely correlating with MCT1 expression. We observed similar findings in TCGA-LIHC data. Conclusions: In our study, we identified and validated miR-342-3p as a tumour suppressor miRNA in HCC. We demonstrated its therapeutic efficacy in significantly attenuating tumour development, and prolonging survival, in different HCC mouse models. Identification of miR-342-3p as an effective tumour suppressor opens a therapeutic avenue for miRNA-mediated attenuation of HCC development. Lay summary: Hepatocellular carcinoma (HCC), the most common type of liver cancer, affects diverse populations and has a global impact, being the fourth leading cause of cancer deaths worldwide. There are currently no systemic therapies for HCC that can significantly prolong long-term survival. Thus, novel effective treatment options are urgently required. To understand the molecular basis of tumour regression, we compared tumours and regressing liver tumours in mice. We show that a small non-coding miRNA, miR-342-3p, is a tumour suppressor in HCC. Expression of miR-342-3p is low in tumours and high in regressing tumours. When miR-342-3p is delivered to mouse livers with HCC, it can significantly slow down liver tumour development and improve survival. Our study highlights the promising therapeutic potential of miR-342-3p intervention in HCC.
    • Epigenome-wide association study identifies DNA methylation markers for asthma remission in whole blood and nasal epithelium.

      Qi, Cancan; Vonk, Judith M; van der Plaat, Diana A; Nieuwenhuis, Maartje A E; Dijk, F Nicole; Aïssi, Dylan; Siroux, Valérie; Boezen, H Marike; Xu, Cheng-Jian; Koppelman, Gerard H; et al. (BMC, 2020-12-11)
      Background: Asthma is a chronic respiratory disease which is not curable, yet some patients experience spontaneous remission. We hypothesized that epigenetic mechanisms may be involved in asthma remission. Methods: Clinical remission (ClinR) was defined as the absence of asthma symptoms and medication for at least 12 months, and complete remission (ComR) was defined as ClinR with normal lung function and absence of airway hyperresponsiveness. We analyzed differential DNA methylation of ClinR and ComR comparing to persistent asthma (PersA) in whole blood samples (n = 72) and nasal brushing samples (n = 97) in a longitudinal cohort of well characterized asthma patients. Significant findings of whole blood DNA methylation were tested for replication in two independent cohorts, Lifelines and Epidemiological study on the Genetics and Environment of Asthma (EGEA). Results: We identified differentially methylated CpG sites associated with ClinR (7 CpG sites) and ComR (129 CpG sites) in whole blood. One CpG (cg13378519, Chr1) associated with ClinR was replicated and annotated to PEX11 (Peroxisomal Biogenesis Factor 11 Beta). The whole blood DNA methylation levels of this CpG were also different between ClinR and healthy subjects. One ComR-associated CpG (cg24788483, Chr10) that annotated to TCF7L2 (Transcription Factor 7 Like 2) was replicated and associated with expression of TCF7L2 gene. One out of seven ClinR-associated CpG sites and 8 out of 129 ComR-associated CpG sites identified from whole blood samples showed nominal significance (P < 0.05) and the same direction of effect in nasal brushes. Conclusion: We identified DNA methylation markers possibly associated with clinical and complete asthma remission in nasal brushes and whole blood, and two CpG sites identified from whole blood can be replicated in independent cohorts and may play a role in peroxisome proliferation and Wnt signaling pathway.
    • Host immune genetic variations influence the risk of developing acute myeloid leukaemia: results from the NuCLEAR consortium.

      Sánchez-Maldonado, J M; Campa, D; Springer, J; Badiola, J; Niazi, Y; Moñiz-Díez, A; Hernández-Mohedo, F; González-Sierra, P; Ter Horst, R; Macauda, A; et al. (Springer Nature, 2020-07-16)
      The purpose of this study was to conduct a two-stage case control association study including 654 acute myeloid leukaemia (AML) patients and 3477 controls ascertained through the NuCLEAR consortium to evaluate the effect of 27 immune-related single nucleotide polymorphisms (SNPs) on AML risk. In a pooled analysis of cohort studies, we found that carriers of the IL13rs1295686A/A genotype had an increased risk of AML (PCorr = 0.0144) whereas carriers of the VEGFArs25648T allele had a decreased risk of developing the disease (PCorr = 0.00086). In addition, we found an association of the IL8rs2227307 SNP with a decreased risk of developing AML that remained marginally significant after multiple testing (PCorr = 0.072). Functional experiments suggested that the effect of the IL13rs1295686 SNP on AML risk might be explained by its role in regulating IL1Ra secretion that modulates AML blast proliferation. Likewise, the protective effect of the IL8rs2227307 SNP might be mediated by TLR2-mediated immune responses that affect AML blast viability, proliferation and chemorresistance. Despite the potential interest of these results, additional functional studies are still warranted to unravel the mechanisms by which these variants modulate the risk of AML. These findings suggested that IL13, VEGFA and IL8 SNPs play a role in modulating AML risk.
    • Mendelian randomization while jointly modeling cis genetics identifies causal relationships between gene expression and lipids.

      van der Graaf, Adriaan; Claringbould, Annique; Rimbert, Antoine; Westra, Harm-Jan; Li, Yang; Wijmenga, Cisca; Sanna, Serena; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Nature publishing group (NPG), 2020-10-01)
      Inference of causality between gene expression and complex traits using Mendelian randomization (MR) is confounded by pleiotropy and linkage disequilibrium (LD) of gene-expression quantitative trait loci (eQTL). Here, we propose an MR method, MR-link, that accounts for unobserved pleiotropy and LD by leveraging information from individual-level data, even when only one eQTL variant is present. In simulations, MR-link shows false-positive rates close to expectation (median 0.05) and high power (up to 0.89), outperforming all other tested MR methods and coloc. Application of MR-link to low-density lipoprotein cholesterol (LDL-C) measurements in 12,449 individuals with expression and protein QTL summary statistics from blood and liver identifies 25 genes causally linked to LDL-C. These include the known SORT1 and ApoE genes as well as PVRL2, located in the APOE locus, for which a causal role in liver was not known. Our results showcase the strength of MR-link for transcriptome-wide causal inferences.
    • Performance of Roche qualitative HEV assay on the cobas 6800 platform for quantitative measurement of HEV RNA.

      Thodou, Viktoria; Bremer, Birgit; Anastasiou, Olympia E; Cornberg, Markus; Maasoumy, Benjamin; Wedemeyer, Heiner; CIIM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Elsevier, 2020-06-27)
      Background: Hepatitis E virus (HEV) infection is an increasingly recognized cause of acute and chronic hepatitis in high-income countries and is the most frequent cause of acute viral hepatitis in many European countries. Appropriate tools to detect and quantify HEV RNA are needed. This study aimed to evaluate the performance of the Roche cobas® HEV assay and compare it with the Fast Track Diagnostics (FTD) Hepatitis E RNA assay. Methods: HEV viral load determination and lower limit of detection (LOD, defined as the lowest amount of viral copies that could be detected in 95 % of repeats) were assessed using a WHO standard dilution panel, testing 240 samples of various concentrations. Reproducibility was tested at three different concentration levels, for different genotypes, and with different sample types (serum, plasma) in 30 samples. Sample stability was analyzed after three freeze/thaw cycles in 25 samples. Results: Cobas HEV assay showed a strong linear relationship between log of HEV WHO dilution series and Ct values over the reportable range from 200-5000 IU/mL HEV RNA copies. The amplification efficiency was higher than 92 %. LOD was 22 IU/mL (95 % CI: 17.4-31.8) and reproducibility tests showed a 100 % nucleic acid test (NAT) reactivity of cobas HEV for WHO dilution series (range 200-5000 IU/mL, n = 90). Cobas HEV assay detected all different HEV genotypes from biobank samples irrespective of the sample type. NAT reactivity of cobas HEV was not affected by three freeze/thaw cycles. Conclusions: Roche cobas HEV assay is a powerful NAT tool in terms of robustness, reproducibility and linearity. It is a feasible alternative for high-volume testing.
    • Pilot Study Using Machine Learning to Identify Immune Profiles for the Prediction of Early Virological Relapse After Stopping Nucleos(t)ide Analogues in HBeAg-Negative CHB.

      Wübbolding, Maximilian; Lopez Alfonso, Juan Carlos; Lin, Chun-Yen; Binder, Sebastian; Falk, Christine; Debarry, Jennifer; Gineste, Paul; Kraft, Anke R M; Chien, Rong-Nan; Maasoumy, Benjamin; et al. (Wiley, 2020-11-05)
      Treatment with nucleos(t)ide analogues (NAs) may be stopped after 1-3 years of hepatitis B virus DNA suppression in hepatitis B e antigen (HBeAg)-negative patients according to Asian Pacific Association for the Study of Liver and European Association for the Study of Liver guidelines. However, virological relapse (VR) occurs in most patients. We aimed to analyze soluble immune markers (SIMs) and use machine learning to identify SIM combinations as predictor for early VR after NA discontinuation. A validation cohort was used to verify the predictive power of the SIM combination. In a post hoc analysis of a prospective, multicenter therapeutic vaccination trial (ABX-203, NCT02249988), hepatitis B surface antigen, hepatitis B core antigen, and 47 SIMs were repeatedly determined before NA was stopped. Forty-three HBeAg-negative patients were included. To detect the highest predictive constellation of host and viral markers, a supervised machine learning approach was used. Data were validated in a different cohort of 49 patients treated with entecavir. VR (hepatitis B virus DNA ≥ 2,000 IU/mL) occurred in 27 patients. The predictive value for VR of single SIMs at the time of NA stop was best for interleukin (IL)-2, IL-17, and regulated on activation, normal T cell expressed and secreted (RANTES/CCL5) with a maximum area under the curve of 0.65. Hepatitis B core antigen had a higher predictive power than hepatitis B surface antigen but lower than the SIMs. A supervised machine-learning algorithm allowed a remarkable improvement of early relapse prediction in patients treated with entecavir. The combination of IL-2, monokine induced by interferon γ (MIG)/chemokine (C-C motif) ligand 9 (CCL9), RANTES/CCL5, stem cell factor (SCF), and TNF-related apoptosis-inducing ligand (TRAIL) was reliable in predicting VR (0.89; 95% confidence interval: 0.5-1.0) and showed viable results in the validation cohort (0.63; 0.1-0.99). Host immune markers such as SIMs appear to be underestimated in guiding treatment cessation in HBeAg-negative patients. Machine learning can help find predictive SIM patterns that allow a precise identification of patients particularly suitable for NA cessation.
    • Polymorphisms within the and Loci Influence the Risk of Developing Invasive Aspergillosis: A Two-Stage Case Control Study in the Context of the aspBIOmics Consortium.

      ánchez-Maldonado, Jose Manuel; Moñiz-Díez, Ana; Rob Ter Horst, Daniele Campa; Cabrera-Serrano, Antonio José; Garrido-Collado, María Del Pilar; Hernández-Mohedo, Fracisca; Fernández-Puerta, Laura; López-Nevot, , Miguel Ángel; Cunha, Ctistina; González-Sierra, Pedro Antonio; et al. (MDPI, 2020-12-23)
      Here, we assessed whether 36 single nucleotide polymorphisms (SNPs) within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis (IA). We conducted a two-stage case control study including 911 high-risk patients diagnosed with hematological malignancies that were ascertained through the aspBIOmics consortium. The meta-analysis of the discovery and replication populations revealed that carriers of the TNFSF4rs7526628T/T genotype had a significantly increased risk of developing IA (p = 0.00022). We also found that carriers of the TNFSF4rs7526628T allele showed decreased serum levels of TNFSF14 protein (p = 0.0027), and that their macrophages had a decreased fungicidal activity (p = 0.048). In addition, we observed that each copy of the MAPKAPK2rs12137965G allele increased the risk of IA by 60% (p = 0.0017), whereas each copy of the MAPKAPK2rs17013271T allele was estimated to decrease the risk of developing the disease (p = 0.0029). Mechanistically, we found that carriers of the risk MAPKAPK2rs12137965G allele showed increased numbers of CD38+IgM-IgD- plasmablasts in blood (p = 0.00086), whereas those harboring two copies of the allele had decreased serum concentrations of thymic stromal lymphopoietin (p = 0.00097). Finally, we also found that carriers of the protective MAPKAPK2rs17013271T allele had decreased numbers of CD27-IgM-IgD- B cells (p = 0.00087) and significantly lower numbers of CD14+ and CD14+CD16- cells (p = 0.00018 and 0.00023). Altogether, these results suggest a role of the TNFSF4 and MAPKAPK2 genes in determining IA risk.
    • Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease.

      Noz, Marlies P; Bekkering, Siroon; Groh, Laszlo; Nielen, Tim Mj; Lamfers, Evert Jp; Schlitzer, Andreas; El Messaoudi, Saloua; van Royen, Niels; Huys, Erik Hjpg; Preijers, Frank Wmb; et al. (elifesciences.org, 2020-11-10)
      Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and monocyte-related pathways. These results show that in patients with atherosclerosis, activation of innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities for novel treatment strategies.
    • The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan.

      Keating, Samuel T; Groh, Laszlo; van der Heijden, Charlotte D C C; Rodriguez, Hanah; Dos Santos, Jéssica C; Fanucchi, Stephanie; Okabe, Jun; Kaipananickal, Harikrishnan; van Puffelen, Jelmer H; Helder, Leonie; et al.
      Trained immunity confers a sustained augmented response of innate immune cells to a secondary challenge, via a process dependent on metabolic and transcriptional reprogramming. Because of its previous associations with metabolic and transcriptional memory, as well as the importance of H3 histone lysine 4 monomethylation (H3K4me1) to innate immune memory, we hypothesize that the Set7 methyltransferase has an important role in trained immunity induced by β-glucan. Using pharmacological studies of human primary monocytes, we identify trained immunity-specific immunometabolic pathways regulated by Set7, including a previously unreported H3K4me1-dependent plasticity in the induction of oxidative phosphorylation. Recapitulation of β-glucan training in vivo additionally identifies Set7-dependent changes in gene expression previously associated with the modulation of myelopoiesis progenitors in trained immunity. By revealing Set7 as a key regulator of trained immunity, these findings provide mechanistic insight into sustained metabolic changes and underscore the importance of characterizing regulatory circuits of innate immune memory.
    • Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment.

      Schulte-Schrepping, Jonas; Reusch, Nico; Paclik, Daniela; Baßler, Kevin; Schlickeiser, Stephan; Zhang, Bowen; Krämer, Benjamin; Krammer, Tobias; Brumhard, Sophia; Bonaguro, Lorenzo; et al. (Elsevier /Cell Press), 2020-08-05)
      Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
    • Sex-Specific Regulation of Inflammation and Metabolic Syndrome in Obesity.

      Ter Horst, Rob; van den Munckhof, Inge C L; Schraa, Kiki; Aguirre-Gamboa, Raul; Jaeger, Martin; Smeekens, Sanne P; Brand, Tessa; Lemmers, Heidi; Dijkstra, Helga; Galesloot, Tessel E; et al. (Lippincott, Williams & Wilkins, 2020-05-28)
      Metabolic dysregulation and inflammation are important consequences of obesity and impact susceptibility to cardiovascular disease. Anti-inflammatory therapy in cardiovascular disease is being developed under the assumption that inflammatory pathways are identical in women and men, but it is not known if this is indeed the case. In this study, we assessed the sex-specific relation between inflammation and metabolic dysregulation in obesity. Approach and Results: Three hundred two individuals were included, half with a BMI 27 to 30 kg/m2 and half with a BMI>30 kg/m2, 45% were women. The presence of metabolic syndrome was assessed according to the National Cholesterol Education Program-ATPIII criteria, and inflammation was studied using circulating markers of inflammation, cell counts, and ex vivo cytokine production capacity of isolated immune cells. Additionally, lipidomic and metabolomic data were gathered, and subcutaneous fat biopsies were histologically assessed. Metabolic syndrome is associated with an increased inflammatory profile that profoundly differs between women and men: women with metabolic syndrome show a lower concentration of the anti-inflammatory adiponectin, whereas men show increased levels of several pro-inflammatory markers such as IL (interleukin)-6 and leptin. Adipose tissue inflammation showed similar sex-specific associations with these markers. Peripheral blood mononuclear cells isolated from men, but not women, with metabolic syndrome display enhanced cytokine production capacity.
    • Tissue alarmins and adaptive cytokine induce dynamic and distinct transcriptional responses in tissue-resident intraepithelial cytotoxic T lymphocytes.

      Zorro, Maria Magdalena; Aguirre-Gamboa, Raul; Mayassi, Toufic; Ciszewski, Cezary; Barisani, Donatella; Hu, Shixian; Weersma, Rinse K; Withoff, Sebo; Li, Yang; Wijmenga, Cisca; et al. (Elsevier, 2020-02-04)
      The respective effects of tissue alarmins interleukin (IL)-15 and interferon beta (IFNβ), and IL-21 produced by T cells on the reprogramming of cytotoxic T lymphocytes (CTLs) that cause tissue destruction in celiac disease is poorly understood. Transcriptomic and epigenetic profiling of primary intestinal CTLs showed massive and distinct temporal transcriptional changes in response to tissue alarmins, while the impact of IL-21 was limited. Only anti-viral pathways were induced in response to all the three stimuli, albeit with differences in dynamics and strength. Moreover, changes in gene expression were primarily independent of changes in H3K27ac, suggesting that other regulatory mechanisms drive the robust transcriptional response. Finally, we found that IL-15/IFNβ/IL-21 transcriptional signatures could be linked to transcriptional alterations in risk loci for complex immune diseases. Together these results provide new insights into molecular mechanisms that fuel the activation of CTLs under conditions that emulate the inflammatory environment in patients with autoimmune diseases.