Structural analysis of ligand-bound states of the Salmonella type III secretion system ATPase InvC.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2019-10-01
Metadata
Show full item recordAbstract
Translocation of virulence effector proteins through the type III secretion system (T3SS) is essential for the virulence of many medically relevant Gram‐negative bacteria. The T3SS ATPases are conserved components that specifically recognize chaperone–effector complexes and energize effector secretion through the system. It is thought that functional T3SS ATPases assemble into a cylindrical structure maintained by their N‐terminal domains. Using size‐exclusion chromatography coupled to multi‐angle light scattering and native mass spectrometry, we show that in the absence of the N‐terminal oligomerization domain the Salmonella T3SS ATPase InvC can form monomers and dimers in solution. We also present for the first time a 2.05 å resolution crystal structure of InvC lacking the oligomerization domain (InvCΔ79) and map the amino acids suggested for ATPase intersubunit interaction, binding to other T3SS proteins and chaperone–effector recognition. Furthermore, we validate the InvC ATP‐binding site by co‐crystallization of InvCΔ79 with ATPγS (2.65 å) and ADP (2.80 å). Upon ATP‐analogue recognition, these structures reveal remodeling of the ATP‐binding site and conformational changes of two loops located outside of the catalytic site. Both loops face the central pore of the predicted InvC cylinder and are essential for the function of the T3SS ATPase. Our results present a fine functional and structural correlation of InvC and provide further details of the homo‐oligomerization process and ATP‐dependent conformational changes underlying the T3SS ATPase activity.Citation
Protein Sci. 2019 Oct;28(10):1888-1901. doi: 10.1002/pro.3704. Epub 2019 Aug 24.Affiliation
CSSB, Centre for Structural Systembiologie, Notkestr.85, 22607 Hamburg. Germany.Publisher
WileyJournal
Protein ScienceDOI
10.1002/pro.3704PubMed ID
31393998Type
ArticleLanguage
enISSN
1469-896Xae974a485f413a2113503eed53cd6c53
10.1002/pro.3704
Scopus Count
The following license files are associated with this item:
- Creative Commons