Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2018-07-12
Metadata
Show full item recordAbstract
Microbial electrochemical technologies provide sustainable wastewater treatment and energy production. Despite significant improvements in the power output of microbial fuel cells (MFCs), this technology is still far from practical applications. Extracting electrical energy and harvesting valuable products by electroactive bacteria (EAB) in bioelectrochemical systems (BESs) has emerged as an innovative approach to address energy and environmental challenges. Thus, maximizing power output and resource recovery is highly desirable for sustainable systems. Insights into the electrode-microbe interactions may help to optimize the performance of BESs for envisioned applications, and further validation by bioelectrochemical techniques is a prerequisite to completely understand the electro-microbiology. This review summarizes various extracellular electron transfer mechanisms involved in BESs. The significant role of characterization techniques in the advancement of the electro-microbiology field is discussed. Finally, diverse applications of BESs, such as resource recovery, and contributions to the pursuit of a more sustainable society are also highlighted.Affiliation
TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany.Publisher
MDPI AGJournal
EnergiesType
ArticleLanguage
enISSN
1996-1073ae974a485f413a2113503eed53cd6c53
10.3390/en11071822
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International