Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Marasco, MBerteotti, A
Weyershaeuser, J
Thorausch, N
Sikorska, J
Krausze, J
Brandt, H J
Kirkpatrick, J
Rios, P
Schamel, W W
Köhn, M
Carlomagno, T
Issue Date
2020-01-01
Metadata
Show full item recordAbstract
In cancer, the programmed death-1 (PD-1) pathway suppresses T cell stimulation and mediates immune escape. Upon stimulation, PD-1 becomes phosphorylated at its immune receptor tyrosine-based inhibitory motif (ITIM) and immune receptor tyrosine-based switch motif (ITSM), which then bind the Src homology 2 (SH2) domains of SH2-containing phosphatase 2 (SHP2), initiating T cell inactivation. The SHP2-PD-1 complex structure and the exact functions of the two SH2 domains and phosphorylated motifs remain unknown. Here, we explain the structural basis and provide functional evidence for the mechanism of PD-1-mediated SHP2 activation. We demonstrate that full activation is obtained only upon phosphorylation of both ITIM and ITSM: ITSM binds C-SH2 with strong affinity, recruiting SHP2 to PD-1, while ITIM binds N-SH2, displacing it from the catalytic pocket and activating SHP2. This binding event requires the formation of a new inter-domain interface, offering opportunities for the development of novel immunotherapeutic approaches.Citation
Sci Adv. 2020 Jan 31;6(5):eaay4458. doi: 10.1126/sciadv.aay4458. eCollection 2020 Jan.Affiliation
HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.Journal
Science AdvancesPubMed ID
32064351Type
ArticleLanguage
enISSN
2375-2548ae974a485f413a2113503eed53cd6c53
10.1126/sciadv.aay4458
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International