Functional omics analyses reveal only minor effects of microRNAs on human somatic stem cell differentiation.
Name:
Schira-Heinen et al.pdf
Size:
4.255Mb
Format:
PDF
Description:
Open Access publication
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Schira-Heinen, JessicaCzapla, Agathe
Hendricks, Marion
Kloetgen, Andreas
Wruck, Wasco
Adjaye, James
Kögler, Gesine
Werner Müller, Hans
Stühler, Kai
Trompeter, Hans-Ingo
Issue Date
2020-02-24
Metadata
Show full item recordAbstract
The contribution of microRNA-mediated posttranscriptional regulation on the final proteome in differentiating cells remains elusive. Here, we evaluated the impact of microRNAs (miRNAs) on the proteome of human umbilical cord blood-derived unrestricted somatic stem cells (USSC) during retinoic acid (RA) differentiation by a systemic approach using next generation sequencing analysing mRNA and miRNA expression and quantitative mass spectrometry-based proteome analyses. Interestingly, regulation of mRNAs and their dedicated proteins highly correlated during RA-incubation. Additionally, RA-induced USSC demonstrated a clear separation from native USSC thereby shifting from a proliferating to a metabolic phenotype. Bioinformatic integration of up- and downregulated miRNAs and proteins initially implied a strong impact of the miRNome on the XXL-USSC proteome. However, quantitative proteome analysis of the miRNA contribution on the final proteome after ectopic overexpression of downregulated miR-27a-5p and miR-221-5p or inhibition of upregulated miR-34a-5p, respectively, followed by RA-induction revealed only minor proportions of differentially abundant proteins. In addition, only small overlaps of these regulated proteins with inversely abundant proteins in non-transfected RA-treated USSC were observed. Hence, mRNA transcription rather than miRNA-mediated regulation is the driving force for protein regulation upon RA-incubation, strongly suggesting that miRNAs are fine-tuning regulators rather than active primary switches during RA-induction of USSC.Citation
Sci Rep. 2020 Feb 24;10(1):3284. doi: 10.1038/s41598-020-60065-8.Affiliation
BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany.Publisher
NPGJournal
Syientific reportsPubMed ID
32094412Type
ArticleLanguage
enISSN
2045-2322ae974a485f413a2113503eed53cd6c53
10.1038/s41598-020-60065-8
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International
Related articles
- MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood.
- Authors: Trompeter HI, Dreesen J, Hermann E, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Wernet P
- Issue date: 2013 Feb 19
- Large-scale analysis of MicroRNA expression in motor neuron-like cells derived from human umbilical cord blood mesenchymal stem cells.
- Authors: Sanooghi D, Lotfi A, Bagher Z, Barati S, Karimi A, Faghihi F, Lotfi E, Joghataei MT
- Issue date: 2022 Apr 7
- MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC.
- Authors: Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Müller HW, Wernet P
- Issue date: 2011 Jan 20
- In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway.
- Authors: Sensken S, Waclawczyk S, Knaupp AS, Trapp T, Enczmann J, Wernet P, Kogler G
- Issue date: 2007
- Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.
- Authors: O'Sullivan F, Keenan J, Aherne S, O'Neill F, Clarke C, Henry M, Meleady P, Breen L, Barron N, Clynes M, Horgan K, Doolan P, Murphy R
- Issue date: 2017 Nov 7