Variations in microbiota composition of laboratory mice influence Citrobacter rodentium infection via variable short-chain fatty acid production.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Osbelt, LisaThiemann, Sophie
Smit, Nathiana
Lesker, Till Robin
Schröter, Madita
Gálvez, Eric J C
Schmidt-Hohagen, Kerstin
Pils, Marina C
Mühlen, Sabrina
Dersch, Petra
Hiller, Karsten
Schlüter, Dirk
Neumann-Schaal, Meina
Strowig, Till

Issue Date
2020-03-24
Metadata
Show full item recordAbstract
The composition of the intestinal microbiota influences the outcome of enteric infections in human and mice. However, the role of specific members and their metabolites contributing to disease severity is largely unknown. Using isogenic mouse lines harboring distinct microbiota communities, we observed highly variable disease kinetics of enteric Citrobacter rodentium colonization after infection. Transfer of communities from susceptible and resistant mice into germ-free mice verified that the varying susceptibilities are determined by microbiota composition. The strongest differences in colonization were observed in the cecum and could be maintained in vitro by coculturing cecal bacteria with C. rodentium. Cohousing of animals as well as the transfer of cultivable bacteria from resistant to susceptible mice led to variable outcomes in the recipient mice. Microbiome analysis revealed that a higher abundance of butyrate-producing bacteria was associated with the resistant phenotype. Quantification of short-chain fatty acid (SCFA) levels before and after infection revealed increased concentrations of acetate, butyrate and propionate in mice with delayed colonization. Addition of physiological concentrations of butyrate, but not of acetate and/or propionate strongly impaired growth of C. rodentium in vitro. In vivo supplementation of susceptible, antibiotic-treated and germ-free mice with butyrate led to the same level of protection, notably only when cecal butyrate concentration reached a concentration higher than 50 nmol/mg indicating a critical threshold for protection. In the recent years, commensal-derived primary and secondary bacterial metabolites emerged as potent modulators of hosts susceptibility to infection. Our results provide evidence that variations in SCFA production in mice fed fibre-rich chow-based diets modulate susceptibility to colonization with Enterobacteriaceae not only in antibiotic-disturbed ecosystems but even in undisturbed microbial communities. These findings emphasise the need for microbiota normalization across laboratory mouse lines for infection experiments with the model-pathogen C. rodentium independent of investigations of diet and antibiotic usage.Citation
PLoS Pathog. 2020 Mar 24;16(3):e1008448. doi: 10.1371/journal.ppat.1008448.Affiliation
HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany.Publisher
PLOSJournal
PLoS pathogensPubMed ID
32208465Type
ArticleLanguage
enEISSN
1553-7374ae974a485f413a2113503eed53cd6c53
10.1371/journal.ppat.1008448
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International
Related articles
- Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice.
- Authors: Brown K, Abbott DW, Uwiera RRE, Inglis GD
- Issue date: 2018
- Ground flaxseed reverses protection of a reduced-fat diet against Citrobacter rodentium-induced colitis.
- Authors: Määttänen P, Lurz E, Botts SR, Wu RY, Yeung CW, Li B, Abiff S, Johnson-Henry KC, Lepp D, Power KA, Pierro A, Surette ME, Sherman PM
- Issue date: 2018 Nov 1
- Host immunity and the colon microbiota of mice infected with Citrobacter rodentium are beneficially modulated by lipid-soluble extract from late-cutting alfalfa in the early stages of infection.
- Authors: Fries-Craft K, Anast JM, Schmitz-Esser S, Bobeck EA
- Issue date: 2020
- Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium.
- Authors: Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M
- Issue date: 2010 Apr
- Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing.
- Authors: Hoffmann C, Hill DA, Minkah N, Kirn T, Troy A, Artis D, Bushman F
- Issue date: 2009 Oct