Assortative mating by population of origin in a mechanistic model of admixture
dc.contributor.author | Goldberg, Amy | |
dc.contributor.author | Rastogi, Ananya | |
dc.contributor.author | Rosenberg, Noah A. | |
dc.date.accessioned | 2020-05-10T13:48:51Z | |
dc.date.available | 2020-05-10T13:48:51Z | |
dc.date.issued | 2020-04-07 | |
dc.identifier.citation | Theor Popul Biol. 2020 Apr 7. pii: S0040-5809(20)30025-3. doi: 10.1016/j.tpb.2020.02.004. | en_US |
dc.identifier.issn | 0040-5809 | |
dc.identifier.pmid | 32275920 | |
dc.identifier.doi | 10.1016/j.tpb.2020.02.004 | |
dc.identifier.uri | http://hdl.handle.net/10033/622250 | |
dc.description.abstract | Populations whose mating pairs have levels of similarity in phenotypes or genotypes that differ systematically from the level expected under random mating are described as experiencing assortative mating. Excess similarity in mating pairs is termed positive assortative mating, and excess dissimilarity is negative assortative mating. In humans, empirical studies suggest that mating pairs from various admixed populations-whose ancestry derives from two or more source populations-possess correlated ancestry components that indicate the occurrence of positive assortative mating on the basis of ancestry. Generalizing a two-sex mechanistic admixture model, we devise a model of one form of ancestry-assortative mating that occurs through preferential mating based on source population. Under the model, we study the moments of the admixture fraction distribution for different assumptions about mating preferences, including both positive and negative assortative mating by population. We demonstrate that whereas the mean admixture under assortative mating is equivalent to that of a corresponding randomly mating population, the variance of admixture depends on the level and direction of assortative mating. We consider two special cases of assortative mating by population: first, a single admixture event, and second, constant contributions to the admixed population over time In contrast to standard settings in which positive assortment increases variation within a population, certain assortative mating scenarios allow the variance of admixture to decrease relative to a corresponding randomly mating population: with the three populations we consider, the variance-increasing effect of positive assortative mating within a population might be overwhelmed by a variance-decreasing effect emerging from mating preferences involving other pairs of populations. The effect of assortative mating is smaller on the X chromosome than on the autosomes because inheritance of the X in males depends only on the mother's ancestry, not on the mating pair. Because the variance of admixture is informative about the timing of admixture and possibly about sex-biased admixture contributions, the effects of assortative mating are important to consider in inferring features of population history from distributions of admixture values. Our model provides a framework to quantitatively study assortative mating under flexible scenarios of admixture over time. | en_US |
dc.description.sponsorship | National Institutes of Health | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier BV | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.uri | https://www.elsevier.com/tdm/userlicense/1.0/ | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | Ecology, Evolution, Behavior and Systematics | en_US |
dc.title | Assortative mating by population of origin in a mechanistic model of admixture | en_US |
dc.type | Article | en_US |
dc.contributor.department | BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. | en_US |
dc.identifier.journal | Theoretical population Biology | en_US |
dc.identifier.pii | S0040580920300253 | |
refterms.dateFOA | 2020-05-10T13:48:53Z | |
dc.source.journaltitle | Theoretical Population Biology |