Clarithromycin Exerts an Antibiofilm Effect against rdar Biofilm Formation, and Transforms the Physiology towards an Apparent Oxygen-depleted Energy and Carbon Metabolism.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Zafar, MuniraJahan, Humera
Shafeeq, Sulman
Nimtz, Manfred
Jänsch, Lothar

Römling, Ute
Choudhary, M Iqbal
Issue Date
2020-08-24
Metadata
Show full item recordAbstract
Upon biofilm formation, production of extracellular matrix components and alteration in physiology and metabolism allows bacteria to build up multicellular communities which can facilitate nutrient acquisition during unfavorable conditions and provide protection towards various forms of environmental stresses to individual cells. Thus, bacterial cells become tolerant against antimicrobials and the immune system within biofilms. In the current study, we evaluated the antibiofilm activity of the macrolides clarithromycin and azithromycin. Clarithromycin showed antibiofilm activity against rdar (red, dry and rough) biofilm formation of the gastrointestinal pathogen Salmonella typhimurium ATCC14028 Nalr at 1.56 μM subinhibitory concentration in standing culture and dissolved cell aggregates at 15 μM in a microaerophilic environment suggesting that the oxygen level affects the activity of the drug. Treatment with clarithromycin significantly decreased transcription and production of the rdar biofilm activator CsgD, with biofilm genes such as csgB and adrA to be consistently downregulated. While fliA and other flagellar regulon genes were upregulated, apparent motility was downregulated. RNA sequencing showed a holistic cell response upon clarithromycin exposure, whereby not only genes involved in the biofilm-related regulatory pathways, but also genes that likely contribute to intrinsic antimicrobial resistance, and the heat shock stress response were differentially regulated. Most significantly, clarithromycin exposure shifts the cells towards an apparent oxygen- and energy- depleted status, whereby the metabolism that channels into oxidative phosphorylation is downregulated, and energy gain by degradation of propane 1,2-diol, ethanolamine and L-arginine catabolism, potentially also to prevent cytosolic, is upregulated. This analysis will allow the subsequent identification of novel intrinsic antimicrobial resistance determinants.Citation
Infect Immun. 2020;IAI.00510-20. doi:10.1128/IAI.00510-20.Affiliation
HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.Publisher
ASMJournal
Infection and immunityPubMed ID
32839186Type
ArticleLanguage
enEISSN
1098-5522ae974a485f413a2113503eed53cd6c53
10.1128/IAI.00510-20
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International
Related articles
- Genetic Determinants of <i>Salmonella</i> Resistance to the Biofilm-Inhibitory Effects of a Synthetic 4-Oxazolidinone Analog.
- Authors: Griewisch KF, Pierce JG, Elfenbein JR
- Issue date: 2020 Oct 1
- Regulation of biofilm formation in Salmonella enterica serovar Typhimurium.
- Authors: Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U
- Issue date: 2014
- Impact of quinolone-resistance acquisition on biofilm production and fitness in Salmonella enterica.
- Authors: Fàbrega A, Soto SM, Ballesté-Delpierre C, Fernández-Orth D, Jiménez de Anta MT, Vila J
- Issue date: 2014 Jul
- Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium.
- Authors: Janssens JC, Steenackers H, Robijns S, Gellens E, Levin J, Zhao H, Hermans K, De Coster D, Verhoeven TL, Marchal K, Vanderleyden J, De Vos DE, De Keersmaecker SC
- Issue date: 2008 Nov
- Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm.
- Authors: Baugh S, Ekanayaka AS, Piddock LJ, Webber MA
- Issue date: 2012 Oct