Hepatic Transcriptome Analysis Identifies Divergent Pathogen-Specific Targeting-Strategies to Modulate the Innate Immune System in Response to Intramammary Infection.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Heimes, AnnikaBrodhagen, Johanna
Weikard, Rosemarie
Seyfert, Hans-Martin
Becker, Doreen
Meyerholz, Marie M
Petzl, Wolfram
Zerbe, Holm
Hoedemaker, Martina
Rohmeier, Laura
Schuberth, Hans-Joachim
Schmicke, Marion
Engelmann, Susanne
Kühn, Christa
Issue Date
2020-04-29
Metadata
Show full item recordAbstract
Mastitis is one of the major risks for public health and animal welfare in the dairy industry. Two of the most important pathogens to cause mastitis in dairy cattle are Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). While S. aureus generally induces a chronic and subclinical mastitis, E. coli is an important etiological pathogen resulting in an acute and clinical mastitis. The liver plays a central role in both, the metabolic and inflammatory physiology of the dairy cow, which is particularly challenged in the early lactation due to high metabolic and immunological demands. In the current study, we challenged the mammary glands of Holstein cows with S. aureus or E. coli, respectively, mimicking an early lactation infection. We compared the animals' liver transcriptomes with those of untreated controls to investigate the hepatic response of the individuals. Both, S. aureus and E. coli elicited systemic effects on the host after intramammary challenge and seemed to use pathogen-specific targeting strategies to bypass the innate immune system. The most striking result of our study is that we demonstrate for the first time that S. aureus intramammary challenge causes an immune response beyond the original local site of the mastitis. We found that in the peripheral liver tissue defined biological pathways are switched on in a coordinated manner to balance the immune response in the entire organism. TGFB1 signaling plays a crucial role in this context. Important pathways involving actin and integrin, key components of the cytoskeleton, were downregulated in the liver of S. aureus infected cows. In the hepatic transcriptome of E. coli infected cows, important components of the complement system were significantly lower expressed compared to the control cows. Notably, while S. aureus inhibits the cell signaling by Rho GTPases in the liver, E. coli switches the complement system off. Also, metabolic hepatic pathways (e.g., lipid metabolism) are affected after mammary gland challenge, demonstrating that the liver restricts metabolic tasks in favor of the predominant immune response after infection. Our results provide new insights for the infection-induced modifications of the dairy cow's hepatic transcriptome following mastitis.Citation
Front Immunol. 2020 Apr 29;11:715. doi: 10.3389/fimmu.2020.00715.Affiliation
HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.Publisher
FrontiersJournal
Frontiers in immunologyPubMed ID
32411137Type
ArticleOther
Language
enEISSN
1664-3224ae974a485f413a2113503eed53cd6c53
10.3389/fimmu.2020.00715
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International
Related articles
- Differentiating Staphylococcus aureus from Escherichia coli mastitis: S. aureus triggers unbalanced immune-dampening and host cell invasion immediately after udder infection.
- Authors: Günther J, Petzl W, Bauer I, Ponsuksili S, Zerbe H, Schuberth HJ, Brunner RM, Seyfert HM
- Issue date: 2017 Jul 6
- Host-response patterns of intramammary infections in dairy cows.
- Authors: Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM, members of the Pfizer mastitis research consortium
- Issue date: 2011 Dec 15
- Comparison of the pathogen species-specific immune response in udder derived cell types and their models.
- Authors: Günther J, Koy M, Berthold A, Schuberth HJ, Seyfert HM
- Issue date: 2016 Feb 1
- Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system.
- Authors: Gilbert FB, Cunha P, Jensen K, Glass EJ, Foucras G, Robert-Granié C, Rupp R, Rainard P
- Issue date: 2013 Jun 11
- Early transcriptional events in the udder and teat after intra-mammary Escherichia coli and Staphylococcus aureus challenge.
- Authors: Petzl W, Günther J, Mühlbauer K, Seyfert HM, Schuberth HJ, Hussen J, Sauter-Louis C, Hafner-Marx A, Zerbe H
- Issue date: 2016 May