Show simple item record

dc.contributor.authorPinel-Cabello, M.
dc.contributor.authorJroundi, F.
dc.contributor.authorLópez-Fernández, M.
dc.contributor.authorGeffers, R.
dc.contributor.authorJarek, M.
dc.contributor.authorJauregui, R.
dc.contributor.authorLink, A.
dc.contributor.authorVílchez-Vargas, R.
dc.contributor.authorMerroun, M. L.
dc.date.accessioned2020-11-18T11:55:25Z
dc.date.available2020-11-18T11:55:25Z
dc.date.issued2021-02-05
dc.identifier.citationJournal of hazardous materials 2021 Jan 5 DOI:10.1016/j.jhazmat.2020.123858.en_US
dc.identifier.issn03043894
dc.identifier.doi10.1016/j.jhazmat.2020.123858
dc.identifier.urihttp://hdl.handle.net/10033/622593
dc.description.abstractThe potential use of microorganisms in the bioremediation of U pollution has been extensively described. However, a lack of knowledge on molecular resistance mechanisms has become a challenge for the use of these technologies. We reported on the transcriptomic and microscopic response of Stenotrophomonas bentonitica BII-R7 exposed to 100 and 250 μM of U. Results showed that exposure to 100 μM displayed up-regulation of 185 and 148 genes during the lag and exponential phases, respectively, whereas 143 and 194 were down-regulated, out of 3786 genes (>1.5-fold change). Exposure to 250 μM of U showed up-regulation of 68 genes and down-regulation of 290 during the lag phase. Genes involved in cell wall and membrane protein synthesis, efflux systems and phosphatases were up-regulated under all conditions tested. Microscopic observations evidenced the formation of U-phosphate minerals at membrane and extracellular levels. Thus, a biphasic process is likely to occur: the increased cell wall would promote the biosorption of U to the cell surface and its precipitation as U-phosphate minerals enhanced by phosphatases. Transport systems would prevent U accumulation in the cytoplasm. These findings contribute to an understanding of how microbes cope with U toxicity, thus allowing for the development of efficient bioremediation strategies.en_US
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporteen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectbiomineralizationen_US
dc.subjectbiosorptionen_US
dc.subjectmicrobial remediationen_US
dc.subjectRNA-Seqen_US
dc.subjecturanium toleranceen_US
dc.titleMultisystem combined uranium resistance mechanisms and bioremediation potential of Stenotrophomonas bentonitica BII-R7: Transcriptomics and microscopic studyen_US
dc.typeArticleen_US
dc.identifier.eissn18733336
dc.contributor.departmentHZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.en_US
dc.identifier.journalJournal of Hazardous Materialsen_US
dc.identifier.eid2-s2.0-85091578066
dc.identifier.scopusidSCOPUS_ID:85091578066
dc.identifier.piiS0304389420318471
dc.source.volume403
refterms.dateFOA2020-11-18T11:55:26Z
dc.source.journaltitleJournal of Hazardous Materials


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
Pinel-Cabello et al.pdf
Size:
9.260Mb
Format:
PDF
Description:
Open Access article

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International