Flotillin-mediated membrane fluidity controls peptidoglycan synthesis and MreB movement.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Zielińska, AleksandraSavietto, Abigail
de Sousa Borges, Anabela
Martinez, Denis
Berbon, Melanie
Roelofsen, Joël R
Hartman, Alwin M
de Boer, Rinse
Van der Klei, Ida J
Hirsch, Anna Kh
Habenstein, Birgit
Bramkamp, Marc
Scheffers, Dirk-Jan
Issue Date
2020-07-14
Metadata
Show full item recordAbstract
Every living cell is enclosed by a flexible membrane made of molecules known as phospholipids, which protects the cell from harmful chemicals and other threats. In bacteria and some other organisms, a rigid structure known as the cell wall sits just outside of the membrane and determines the cell’s shape. There are several proteins in the membrane of bacteria that allow the cell to grow by assembling new pieces of the cell wall. To ensure these proteins expand the cell wall at the right locations, another protein known as MreB moves and organizes them to the appropriate place in the membrane and controls their activity. Previous studies have found that another class of proteins called flotillins are involved in arranging proteins and phospholipid molecules within membranes. Bacteria lacking these proteins do not grow properly and are unable to maintain their normal shape. However, the precise role of the flotillins remained unclear. Here, Zielińska, Savietto et al. used microscopy approaches to study flotillins in a bacterium known as Bacillus subtilis. The experiments found that, in the presence of flotillins, MreB moved around the membrane more quickly (suggesting it was more active) than when no flotillins were present. Similar results were observed when bacterial cells lacking flotillins were treated with a chemical that made membranes more ‘fluid’ – that is, made it easier for the molecules within the membrane to travel around. Further experiments found that flotillins allowed the phospholipid molecules within an artificial membrane to move around more freely, which increases the fluidity of the membrane. These findings suggest that flotillins make the membranes of bacterial cells more fluid to help cells expand their walls and perform several other processes. Understanding how bacteria control the components of their membranes will further our understanding of how many currently available antibiotics work and may potentially lead to the design of new antibiotics in the future.Citation
Elife. 2020 Jul 14;9:e57179. doi: 10.7554/eLife.57179.Affiliation
HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.Publisher
eLife Sciences Publications, Ltd.Journal
eLifePubMed ID
32662773Type
ArticleLanguage
enEISSN
2050-084Xae974a485f413a2113503eed53cd6c53
10.7554/eLife.57179
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International
Related articles
- Flotillins functionally organize the bacterial membrane.
- Authors: Bach JN, Bramkamp M
- Issue date: 2013 Jun
- An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis.
- Authors: Rueff AS, Chastanet A, Domínguez-Escobar J, Yao Z, Yates J, Prejean MV, Delumeau O, Noirot P, Wedlich-Söldner R, Filipe SR, Carballido-López R
- Issue date: 2014 Jan
- The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes.
- Authors: Divakaruni AV, Baida C, White CL, Gober JW
- Issue date: 2007 Oct
- MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis.
- Authors: Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K, Izoré T, Renner LD, Holmes MJ, Sun Y, Bisson-Filho AW, Walker S, Amir A, Löwe J, Garner EC
- Issue date: 2018 Feb 22
- The actin homologue MreB organizes the bacterial cell membrane.
- Authors: Strahl H, Bürmann F, Hamoen LW
- Issue date: 2014 Mar 7