Mathematical Model Shows How Sleep May Affect Amyloid-β Fibrillization.
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2020-07-22
Metadata
Show full item recordAbstract
Deposition of amyloid-β (Aβ) fibers in the extracellular matrix of the brain is a ubiquitous feature associated with several neurodegenerative disorders, especially Alzheimer's disease (AD). Although many of the biological aspects that contribute to the formation of Aβ plaques are well addressed at the intra- and intercellular levels in short timescales, an understanding of how Aβ fibrillization usually starts to dominate at a longer timescale despite the presence of mechanisms dedicated to Aβ clearance is still lacking. Furthermore, no existing mathematical model integrates the impact of diurnal neural activity as emanated from circadian regulation to predict disease progression due to a disruption in the sleep-wake cycle. In this study, we develop a minimal model of Aβ fibrillization to investigate the onset of AD over a long timescale. Our results suggest that the diseased state is a manifestation of a phase change of the system from soluble Aβ (sAβ) to fibrillar Aβ (fAβ) domination upon surpassing a threshold in the production rate of sAβ. By incorporating the circadian rhythm into our model, we reveal that fAβ accumulation is crucially dependent on the regulation of the sleep-wake cycle, thereby indicating the importance of good sleep hygiene in averting AD onset. We also discuss potential intervention schemes to reduce fAβ accumulation in the brain by modification of the critical sAβ production rate.Citation
Biophys J. 2020 Aug 18;119(4):862-872. doi: 10.1016/j.bpj.2020.07.011. Epub 2020 Jul 22.Affiliation
BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.Publisher
Elsevier (CellPress)Journal
Biophysical journalPubMed ID
32758420Type
ArticleLanguage
enEISSN
1542-0086ae974a485f413a2113503eed53cd6c53
10.1016/j.bpj.2020.07.011
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International