Angucycline-like Aromatic Polyketide from a Novel Streptomyces Species Reveals Freshwater Snail Physa acuta as Underexplored Reservoir for Antibiotic-Producing Actinomycetes.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2020-12-29
Metadata
Show full item recordAbstract
Antibiotic producers have mainly been isolated from soil, which often has led to the rediscovery of known compounds. In this study, we identified the freshwater snail Physa acuta as an unexplored source for new antibiotic producers. The bacterial diversity associated with the snail was characterized by a metagenomic approach using cultivation-independent high-throughput sequencing. Although Actinobacteria represented only 2% of the bacterial community, the focus was laid on the isolation of the genus Streptomyces due to its potential to produce antibiotics. Three Streptomyces strains (7NS1, 7NS2 and 7NS3) were isolated from P. acuta, and the antimicrobial activity of the crude extracts were tested against a selection of Gram-positive and Gram-negative bacteria and fungi. 7NS3 showed the strongest activity against Gram-positive bacteria and, thus, was selected for genome sequencing and a phylogenomic analysis. 7NS3 represents a novel Streptomyces species, which was deposited as Streptomyces sp. DSM 110735 at the Leibniz Institute-German Collection of Microorganisms and Cell Cultures (DSMZ). Bioassay-guided high-performance liquid chromatography (HPLC) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS) analyses of crude extract fractions resulted in the detection of four compounds, one of which matched the compound characteristics of emycin A, an angucycline-like aromatic polyketide. Genome mining studies based on the whole-genome sequence of 7NS3 resulted in the identification of a gene cluster potentially coding for emycin A biosynthesis. Our study demonstrates that freshwater snails like P. acuta can represent promising reservoirs for the isolation of new antibiotic-producing actinobacterial species.Citation
Antibiotics (Basel). 2020 Dec 29;10(1):E22. doi: 10.3390/antibiotics10010022.Affiliation
HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.Publisher
MDPIJournal
Antibiotics (Basel, Switzerland)PubMed ID
33383910Type
ArticleLanguage
enISSN
2079-6382ae974a485f413a2113503eed53cd6c53
10.3390/antibiotics10010022
Scopus Count
The following license files are associated with this item:
- Creative Commons
Related articles
- Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem.
- Authors: Hu D, Chen Y, Sun C, Jin T, Fan G, Liao Q, Mok KM, Lee MS
- Issue date: 2018 Sep 24
- The evolution of reproductive isolation in a simultaneous hermaphrodite, the freshwater snail Physa.
- Authors: Dillon RT Jr, Wethington AR, Lydeard C
- Issue date: 2011 May 27
- DNA barcoding of the medically important freshwater snail Physa acuta reveals multiple invasion events into Africa.
- Authors: Lawton SP, Allan F, Hayes PM, Smit NJ
- Issue date: 2018 Dec
- [Novel angucycline/angucyclinone family of natural products discovered between 2010 and 2020].
- Authors: Zhang J, Duan Y, Zhu X, Yan X
- Issue date: 2021 Jun 25
- Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds.
- Authors: Zothanpuia, Passari AK, Leo VV, Chandra P, Kumar B, Nayak C, Hashem A, Abd Allah EF, Alqarawi AA, Singh BP
- Issue date: 2018 May 5