Multiple copies of the oxytetracycline gene cluster in selected Streptomyces rimosus strains can provide significantly increased titers.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Pikl, ŠpelaCarrillo Rincón, Andrés Felipe
Slemc, Lucija
Goranovič, Dušan
Avbelj, Martina
Gjuračić, Krešimir
Sucipto, Hilda
Stare, Katja
Baebler, Špela
Šala, Martin
Guo, Meijin
Luzhetskyy, Andriy
Petković, Hrvoje
Magdevska, Vasilka
Issue Date
2021-02-17
Metadata
Show full item recordAbstract
Background: Natural products are a valuable source of biologically active compounds that have applications in medicine and agriculture. One disadvantage with natural products is the slow, time-consuming strain improvement regimes that are necessary to ensure sufficient quantities of target compounds for commercial production. Although great efforts have been invested in strain selection methods, many of these technologies have not been improved in decades, which might pose a serious threat to the economic and industrial viability of such important bioprocesses. Results: In recent years, introduction of extra copies of an entire biosynthetic pathway that encodes a target product in a single microbial host has become a technically feasible approach. However, this often results in minor to moderate increases in target titers. Strain stability and process reproducibility are the other critical factors in the industrial setting. Industrial Streptomyces rimosus strains for production of oxytetracycline are one of the most economically efficient strains ever developed, and thus these represent a very good industrial case. To evaluate the applicability of amplification of an entire gene cluster in a single host strain, we developed and evaluated various gene tools to introduce multiple copies of the entire oxytetracycline gene cluster into three different Streptomyces rimosus strains: wild-type, and medium and high oxytetracycline-producing strains. We evaluated the production levels of these engineered S. rimosus strains with extra copies of the oxytetracycline gene cluster and their stability, and the oxytetracycline gene cluster expression profiles; we also identified the chromosomal integration sites. Conclusions: This study shows that stable and reproducible increases in target secondary metabolite titers can be achieved in wild-type and in high oxytetracycline-producing strains, which always reflects the metabolic background of each independent S. rimosus strain. Although this approach is technically very demanding and requires systematic effort, when combined with modern strain selection methods, it might constitute a very valuable approach in industrial process development.Citation
Microb Cell Fact. 2021 Feb 17;20(1):47. doi: 10.1186/s12934-021-01522-5.Affiliation
HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.Publisher
BioMedCentralJournal
Microbial cell factoriesPubMed ID
33596911Type
ArticleLanguage
enEISSN
1475-2859ae974a485f413a2113503eed53cd6c53
10.1186/s12934-021-01522-5
Scopus Count
The following license files are associated with this item:
- Creative Commons
Related articles
- Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus.
- Authors: Yin S, Wang W, Wang X, Zhu Y, Jia X, Li S, Yuan F, Zhang Y, Yang K
- Issue date: 2015 Apr 2
- Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host.
- Authors: Wang X, Yin S, Bai J, Liu Y, Fan K, Wang H, Yuan F, Zhao B, Li Z, Wang W
- Issue date: 2019 Aug
- Molecular Biology Methods in Streptomyces rimosus, a Producer of Oxytetracycline.
- Authors: Slemc L, Pikl Š, Petković H, Avbelj M
- Issue date: 2021
- Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus.
- Authors: Yin S, Wang X, Shi M, Yuan F, Wang H, Jia X, Yuan F, Sun J, Liu T, Yang K, Zhang Y, Fan K, Li Z
- Issue date: 2017 Sep
- Enhanced Oxytetracycline Production by Streptomyces rimosus in Submerged Co-Cultures with Streptomyces noursei.
- Authors: Boruta T, Ścigaczewska A
- Issue date: 2021 Oct 5