Show simple item record

dc.contributor.authorBarua, Arnab
dc.contributor.authorSyga, Simon
dc.contributor.authorMascheroni, Pietro
dc.contributor.authorKavallaris, Nikos
dc.contributor.authorMeyer-Hermann, Michael
dc.contributor.authorDeutsch, Andreas
dc.contributor.authorHatzikirou, Haralampos
dc.date.accessioned2021-05-03T13:21:14Z
dc.date.available2021-05-03T13:21:14Z
dc.date.issued2020-12-01
dc.identifier.citation(2020) New Journal of Physics,22(12)art.no: 123034.en_US
dc.identifier.issn13672630
dc.identifier.doi10.1088/1367-2630/abcb2e
dc.identifier.urihttp://hdl.handle.net/10033/622853
dc.description.abstractCellular decision making allows cells to assume functionally different phenotypes in response to microenvironmental cues, with or without genetic change. It is an open question, how individual cell decisions influence the dynamics at the tissue level. Here, we study spatio-temporal pattern formation in a population of cells exhibiting phenotypic plasticity, which is a paradigm of cell decision making. We focus on the migration/resting and the migration/proliferation plasticity which underly the epithelial-mesenchymal transition and the go or grow dichotomy. We assume that cells change their phenotype in order to minimize their microenvironmental entropy following the LEUP (Least microEnvironmental Uncertainty Principle) hypothesis. In turn, we study the impact of the LEUP-driven migration/resting and migration/proliferation plasticity on the corresponding multicellular spatio-temporal dynamics with a stochastic cell-based mathematical model for the spatio-temporal dynamics of the cell phenotypes. In the case of the go or rest plasticity, a corresponding mean-field approximation allows to identify a bistable switching mechanism between a diffusive (fluid) and an epithelial (solid) tissue phase which depends on the sensitivity of the phenotypes to the environment. For the go or grow plasticity, we show the possibility of Turing pattern formation for the ‘solid’ tissue phase and its relation with the parameters of the LEUP-driven cell decisions.en_US
dc.description.sponsorshipVolkswagen Foundationen_US
dc.publisherInstitute of Physicsen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCell-decision makingen_US
dc.subjectFluid-to-solid transitionen_US
dc.subjectLangevin equationsen_US
dc.subjectLeast microEnvironmental uncertainty principle (LEUP)en_US
dc.subjectMean-field theoryen_US
dc.subjectPhenotypic plasticityen_US
dc.titleEntropy-driven cell decision-making predicts ‘fluid-to-solid’ transition in multicellular systemsen_US
dc.typeArticleen_US
dc.contributor.departmentBRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany.en_US
dc.identifier.journalNew Journal of Physicsen_US
dc.identifier.eid2-s2.0-85097945599
dc.identifier.scopusidSCOPUS_ID:85097945599
dc.source.volume22
dc.source.issue12
refterms.dateFOA2021-05-03T13:21:15Z
dc.source.journaltitleNew Journal of Physics


Files in this item

Thumbnail
Name:
Barua et al.pdf
Size:
2.966Mb
Format:
PDF
Description:
Open Access publication

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International