Department of viral imunology (VIRI): Recent submissions
Now showing items 21-40 of 97
-
Synthetic rewiring and boosting type I interferon responses for visualization and counteracting viral infections.Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.
-
The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection.Background: Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method: Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results: We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions: Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.
-
The avid competitors of memory inflation.Cytomegaloviruses (CMV) coevolve with their hosts and latently persist in the vast majority of adult mammals. Therefore, persistent T-cell responses to CMV antigens during virus latency offer a fascinating perspective on the evolution of the T-cell repertoire in natural settings. We addressed here the life-long interactions between CMV antigens presented on MHC-I molecules and the CD8 T-cell response. We present the mechanistic evidence from the murine model of CMV infection and put it in context of clinical laboratory results. We will highlight the remarkable parallels in T-cell responses between the two biological systems, and focus in particular on memory inflation as a result of competitive processes, both between viral antigenic peptides and between T-cell receptors on the host’s cytotoxic lymphocytes
-
Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs.To compare the effect of low and high viral replication in the brain, wildtype and Irf-7-/- mice were infected with Langat virus (LGTV), which belongs to the TBEV-serogroup. The viral burden was analyzed in the olfactory bulb and the hippocampus. Open field, elevated plus maze, and Morris water maze experiments were performed to determine the impact on anxiety-like behavior, learning, and memory formation. Spine density of hippocampal neurons and activation of microglia and astrocytes were analyzed.
-
Seropositivity for pathogens associated with chronic infections is a risk factor for all-cause mortality in the elderly: findings from the Memory and Morbidity in Augsburg Elderly (MEMO) Study.Immunostimulation by chronic infection has been linked to an increased risk for different non-communicable diseases, which in turn are leading causes of death in high- and middle-income countries. Thus, we investigated if a positive serostatus for pathogens responsible for common chronic infections is individually or synergistically related to reduced overall survival in community dwelling elderly. We used data of 365 individuals from the German MEMO (Memory and Morbidity in Augsburg Elderly) cohort study with a median age of 73 years at baseline and a median follow-up of 14 years. We examined the effect of a positive serostatus at baseline for selected pathogens associated with chronic infections (Helicobacter pylori, Borrelia burgdorferi sensu lato, Toxoplasma gondii, cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1/2, and human herpesvirus 6) on all-cause mortality with multivariable parametric survival models. We found a reduced survival time in individuals with a positive serostatus for Helicobacter pylori (accelerated failure time (AFT) - 15.92, 95% CI - 29.96; - 1.88), cytomegalovirus (AFT - 22.81, 95% CI - 36.41; - 9.22) and Borrelia burgdorferi sensu lato (AFT - 25.25, 95% CI - 43.40; - 7.10), after adjusting for potential confounders. The number of infectious agents an individual was seropositive for had a linear effect on all-cause mortality (AFT per additional infection - 12.42 95% CI - 18.55; - 6.30). Our results suggest an effect of seropositivity for Helicobacter pylori, cytomegalovirus, and Borrelia burgdorferi sensu lato on all-cause mortality in older community dwelling individuals. Further research with larger cohorts and additional biomarkers is required, to assess mediators and molecular pathways of this effect.
-
Cytomegalovirus inhibition of extrinsic apoptosis determines fitness and resistance to cytotoxic CD8 T cells.Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.
-
Exhaustion and Inflation at Antipodes of T Cell Responses to Chronic Virus Infection.Viruses that have coevolved with their host establish chronic infections that are well tolerated by the host. Other viruses, that are partly adapted to their host, may induce chronic infections where persistent replication and viral antigen expression occur. The former induce highly functional and resilient CD8T cell responses called memory inflation. The latter induce dysfunctional and exhausted responses. The reasons compelling T cell responses towards inflationary or exhausted responses are only partly understood. In this review we compare the two conditions and describe mechanistic similarities and differences. We also provide a list of potential reasons why exhaustion or inflation occur in different virus infections. We propose that T cell-mediated transcriptional repression of viral gene expression provides a critical feature of inflation that allows peaceful virus and host coexistence. The virus is controlled, but its genome is not eradicated. If this mechanism is not available, as in the case of RNA viruses, the virus and the host are compelled to an arms race. If virus proliferation and spread proceed uncontrolled for too long, T cells are forced to strike a balance between viral control and tissue destruction, losing antiviral potency and facilitating virus persistence.
-
Advances in cytomegalovirus (CMV) biology and its relationship to health, diseases, and aging.The complexity of host-associated microbial ecosystems requires host-specific reference catalogs to survey the functions and diversity of these communities. We generate a comprehensive resource, the integrated mouse gut metagenome catalog (iMGMC), comprising 4.6 million unique genes and 660 metagenome-assembled genomes (MAGs), many (485 MAGs, 73%) of which are linked to reconstructed full-length 16S rRNA gene sequences. iMGMC enables unprecedented coverage and taxonomic resolution of the mouse gut microbiota; i.e., more than 92% of MAGs lack species-level representatives in public repositories (<95% ANI match). The integration of MAGs and 16S rRNA gene data allows more accurate prediction of functional profiles of communities than predictions based on 16S rRNA amplicons alone. Accompanying iMGMC, we provide a set of MAGs representing 1,296 gut bacteria obtained through complementary assembly strategies. We envision that integrated resources such as iMGMC, together with MAG collections, will enhance the resolution of numerous existing and future sequencing-based studies.
-
Labyrinthopeptins exert broad-spectrum antiviral activity through lipid-binding-mediated virolysis.To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re-)emerging infections, for which direct acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including Dengue virus, Zika virus, West Nile virus, Hepatitis C virus, Chikungunya virus, Karposi's Sarcoma-associated Herpes virus, Cytomegalovirus, and Herpes Simplex virus, in the low μM to nM range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to IC10-IC90 values of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (PC/PE/Chol/SM (17:10:33:40)) are particularly sensitive to labyrinthopeptins compared to PC/PE (90:10) LUVs, even though the overall PE-amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (t1/2= 10.0 h), which designates them as promising antiviral compounds acting by an unusual viral lipid targeting mechanism.Importance For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses - well-known as well as (re-)emerging species - has gained attention, especially for the treatment of viral co-infections. While most known broad spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including Chikungunya virus, Dengue virus, Zika virus, Karposi's Sarcoma-associated Herpes virus, or Cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity to host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.
-
Vaccine Vectors Harnessing the Power of Cytomegaloviruses.Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.
-
Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge.Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.
-
In vivo Neutralization of Pro-inflammatory Cytokines During Secondary Streptococcus pneumoniae Infection Post Influenza A Virus InfectionAn overt pro-inflammatory immune response is a key factor contributing to lethal pneumococcal infection in an influenza pre-infected host and represents a potential target for therapeutic intervention. However, there is a paucity of knowledge about the level of contribution of individual cytokines. Based on the predictions of our previous mathematical modeling approach, the potential benefit of IFN-γ- and/or IL-6-specific antibody-mediated cytokine neutralization was explored in C57BL/6 mice infected with the influenza A/PR/8/34 strain, which were subsequently infected with the Streptococcus pneumoniae strain TIGR4 on day 7 post influenza. While single IL-6 neutralization had no effect on respiratory bacterial clearance, single IFN-γ neutralization enhanced local bacterial clearance in the lungs. Concomitant neutralization of IFN-γ and IL-6 significantly reduced the degree of pneumonia as well as bacteremia compared to the control group, indicating a positive effect for the host during secondary bacterial infection. The results of our model-driven experimental study reveal that the predicted therapeutic value of IFN-γ and IL-6 neutralization in secondary pneumococcal infection following influenza infection is tightly dependent on the experimental protocol while at the same time paving the way toward the development of effective immune therapies.
-
Blocking IL-10 receptor signaling ameliorates Mycobacterium tuberculosis infection during influenza-induced exacerbationEpidemiological findings indicate that coinfection with influenza viruses is associated with an increased risk of death in patients suffering from tuberculosis but the underlying pathomechanisms are not well understood. In this study, we demonstrate that influenza A virus (IAV) coinfection rapidly impairs control of Mycobacterium tuberculosis (Mtb) in C57BL/6 mice. IAV coinfection was associated with significantly increased bacterial loads, reduced survival and a substantial modulation of innate and adaptive immune defenses including an impaired onset and development of Mtb-specific CD4+ T cell responses and the accumulation of macrophages with increased arginase-1 production in the lungs. Our findings strongly indicate that IAV coinfection compromises the host's ability to control Mtb infection via the production of IL-10 which was rapidly induced upon viral infection. The blockade of IL-10 receptor signaling reduced the bacterial load in coinfected mice to a level comparable with that in Mtb-only-infected animals. Taken together, our data suggest that IL-10 signaling constitutes a major pathway that enhances susceptibility to Mtb during concurrent IAV infection
-
The STING activator c-di-AMP exerts superior adjuvant properties than the formulation poly(I:C)/CpG after subcutaneous vaccination with soluble protein antigen or DEC-205-mediated antigen targeting to dendritic cells.Vaccination is the most efficient strategy to protect from infectious diseases and the induction of a protective immune response not only depends on the nature of the antigen, but is also influenced by the vaccination strategy and the co-administration of adjuvants. Therefore, the precise monitoring of adjuvant candidates and their immune modulatory properties is a crucial step in vaccine development. Here, one central aspect is the induction of appropriate humoral and cellular effector mechanisms. In our study we performed a direct comparison of two promising candidates in adjuvant development, the STING activator bis-(3,5)-cyclic dimeric adenosine monophosphate (c-di-AMP) and the Toll-like receptor ligand formulation poly(I:C)/CpG. These were evaluated in C57BL/6 mice using the model antigen ovalbumin (OVA) in subcutaneous vaccination with soluble protein as well as in a dendritic cell (DC) targeting approach (αDEC-OVA). Strikingly, c-di-AMP as compared to poly(I:C)/CpG resulted in significantly higher antigen-specific IgG antibody levels when used in immunization with soluble OVA as well as in antigen targeting to DC. In vaccination with soluble OVA, c-di-AMP induced a significantly stronger CTL, Th1 and IFNγ-producing CD8+ memory T cell response than poly(I:C)/CpG. The response was CTL and Th1 cell dominated, a profile shared by both adjuvants. In the context of targeting OVA to DC, c-di-AMP induced significantly increased Th1 and Th2 cell responses as compared to poly(I:C)/CpG. Interestingly, the Th1 response dominated the overall T cell response only when c-di-AMP was used, indicating a distinct modulatory property of c-di-AMP when the DC targeting immunization approach was exploited. Taken together, we describe superior properties of c-di-AMP as compared to poly(I:C)/CpG in subcutaneous vaccination with soluble antigen as well as antigen targeting to DC. This indicates exceptionally effective adjuvant properties for c-di-AMP and provides compelling evidence of its potential for further adjuvant development, especially also when using DC targeting approaches.
-
Life-long control of cytomegalovirus (CMV) by T resident memory cells in the adipose tissue results in inflammation and hyperglycemia.Cytomegalovirus (CMV) is a ubiquitous herpesvirus infecting most of the world's population. CMV has been rigorously investigated for its impact on lifelong immunity and potential complications arising from lifelong infection. A rigorous adaptive immune response mounts during progression of CMV infection from acute to latent states. CD8 T cells, in large part, drive this response and have very clearly been demonstrated to take up residence in the salivary gland and lungs of infected mice during latency. However, the role of tissue resident CD8 T cells as an ongoing defense mechanism against CMV has not been studied in other anatomical locations. Therefore, we sought to identify additional locations of anti-CMV T cell residency and the physiological consequences of such a response. Through RT-qPCR we found that mouse CMV (mCMV) infected the visceral adipose tissue and that this resulted in an expansion of leukocytes in situ. We further found, through flow cytometry, that adipose tissue became enriched in cytotoxic CD8 T cells that are specific for mCMV antigens from day 7 post infection through the lifespan of an infected animal (> 450 days post infection) and that carry markers of tissue residence. Furthermore, we found that inflammatory cytokines are elevated alongside the expansion of CD8 T cells. Finally, we show a correlation between the inflammatory state of adipose tissue in response to mCMV infection and the development of hyperglycemia in mice. Overall, this study identifies adipose tissue as a location of viral infection leading to a sustained and lifelong adaptive immune response mediated by CD8 T cells that correlates with hyperglycemia. These data potentially provide a mechanistic link between metabolic syndrome and chronic infection.
-
Early primed KLRG1- CMV-specific T cells determine the size of the inflationary T cell pool.Memory T cell inflation is a process in which a subset of cytomegalovirus (CMV) specific CD8 T cells continuously expands mainly during latent infection and establishes a large and stable population of effector memory cells in peripheral tissues. Here we set out to identify in vivo parameters that promote and limit CD8 T cell inflation in the context of MCMV infection. We found that the inflationary T cell pool comprised mainly high avidity CD8 T cells, outcompeting lower avidity CD8 T cells. Furthermore, the size of the inflationary T cell pool was not restricted by the availability of specific tissue niches, but it was directly related to the number of virus-specific CD8 T cells that were activated during priming. In particular, the amount of early-primed KLRG1- cells and the number of inflationary cells with a central memory phenotype were a critical determinant for the overall magnitude of the inflationary T cell pool. Inflationary memory CD8 T cells provided protection from a Vaccinia virus challenge and this protection directly correlated with the size of the inflationary memory T cell pool in peripheral tissues. These results highlight the remarkable protective potential of inflationary CD8 T cells that can be harnessed for CMV-based T cell vaccine approaches.
-
Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity.The gut microbiome has recently emerged as an important regulator of insulin resistance and abdominal obesity. The tryptophan metabolite generated by the gut microbiome, indoleproprionic acid (IPA) has been shown to predict the onset of type 2 diabetes. IPA is a metabolite produced by gut microbes from dietary tryptophan that exhibits a high degree of inter-individual variation. The microbiome composition parameters that are associated with circulating levels of this potent anti-oxidant have however not been investigated to date in human populations. In 1018 middle-aged women from the TwinsUK cohort, we assessed the relationship between serum IPA levels and gut microbiome composition targeting the 16S rRNA gene. Microbiome alpha-diversity was positively correlated with serum indoleproprionic acid levels (Shannon Diversity: Beta[95%CI] = 0.19[0.13;0.25], P = 6.41 × 10-10) after adjustment for covariates. Sixteen taxa and 12 operational taxonomic units (OTUs) associated with IPA serum levels. Among these are positive correlations with the butyrate-producing Faecalibacterium prausnitzii, the class Mollicutes and the order RF39 of the Tenericutes, and Coprococcus Negative correlations instead were observed with Eubacterium dolichum previously shown to correlate with visceral fat mass and several genera in the Lachnospiraceae family such as Blautia and Ruminococcus previously shown to correlate with obesity. Microbiome composition parameters explained ~20% of the variation in circulating levels of IPA, whereas nutritional and host genetic parameters explained only ~4%. Our data confirm an association between IPA circulating levels and metabolic syndrome parameters and indicate that gut microbiome composition influences IPA levels.
-
Essential role of IκB for in vivo CD4 T cell activation, proliferation and Th1 cell differentiation during Listeria monocytogenes infection in mice.Acquisition of effector functions in T cells is guided by transcription factors including NF-κB that itself is tightly controlled by inhibitory proteins. The atypical NF-κB inhibitor IκBNS is involved in the development of Th1, Th17 and Treg cells. However, it remained unclear to which extend IκBNS contributes to the acquisition of effector function in T cells specifically responding to a pathogen during in vivo infection. Tracking of adoptively transferred T cells in Listeria monocytogenes infected mice uncovered antigen-specific activation of CD4+ T cells following in vivo pathogen encounter to strongly rely on IκBNS . While IκBNS was largely dispensable for the acquisition of cytotoxic effector function in CD8+ T cells, IκBNS -deficient Th1 effector cells exhibited significantly reduced proliferation, marked changes in the pattern of activation marker expression and reduced production of the Th1-cell cytokines IFNγ, IL2 and TNFα. Complementary in vitro analyses using cells from novel reporter and inducible knockout mice revealed that IκBNS predominantly affects the early phase of Th1-cell differentiation while its function in terminally differentiated cells appears to be negligible. Our data suggest IκBNS as a potential target to modulate specifically CD4+ T-cell responses. This article is protected by copyright. All rights reserved.