Show simple item record

dc.contributor.authorKuhnert, E
dc.contributor.authorNavarro-Muñoz, J C
dc.contributor.authorBecker, K
dc.contributor.authorStadler, M
dc.contributor.authorCollemare, J
dc.contributor.authorCox, R J
dc.date.accessioned2021-10-01T09:06:45Z
dc.date.available2021-10-01T09:06:45Z
dc.date.issued2021-08-26
dc.identifier.citationStud Mycol. 2021 Aug 26;99:100118. doi: 10.1016/j.simyco.2021.100118.en_US
dc.identifier.issn0166-0616
dc.identifier.pmid34527085
dc.identifier.doi10.1016/j.simyco.2021.100118
dc.identifier.urihttp://hdl.handle.net/10033/623054
dc.description.abstractTo date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAzaphilonesen_US
dc.subjectBinaphthalenesen_US
dc.subjectBiosynthesisen_US
dc.subjectComparative genomicsen_US
dc.subjectMetabolomicsen_US
dc.subjectNatural productsen_US
dc.subjectXylarialesen_US
dc.titleSecondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon.en_US
dc.typeArticleen_US
dc.contributor.departmentHZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.en_US
dc.identifier.journalStudies in mycologyen_US
dc.source.volume99
dc.source.beginpage100118
dc.source.endpage
refterms.dateFOA2021-10-01T09:06:46Z
dc.source.journaltitleStudies in mycology
dc.source.countryNetherlands


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
Kuhnert et al.pdf
Size:
13.50Mb
Format:
PDF
Description:
Open Access publication

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International