Show simple item record

dc.contributor.authorDrost, Menka
dc.contributor.authorDiamanti, Eleonora
dc.contributor.authorFuhrmann, Kathrin
dc.contributor.authorGoes, Adriely
dc.contributor.authorShams, Atanaz
dc.contributor.authorHaupenthal, Jörg
dc.contributor.authorKoch, Marcus
dc.contributor.authorHirsch, Anna K H
dc.contributor.authorFuhrmann, Gregor
dc.date.accessioned2022-02-11T15:05:10Z
dc.date.available2022-02-11T15:05:10Z
dc.date.issued2021-12-21
dc.identifier.citationPharmaceutics. 2021 Dec 21;14(1):4. doi: 10.3390/pharmaceutics14010004.en_US
dc.identifier.issn1999-4923
dc.identifier.pmid35056900
dc.identifier.doi10.3390/pharmaceutics14010004
dc.identifier.urihttp://hdl.handle.net/10033/623163
dc.description.abstractLiposomes have been studied for decades as nanoparticulate drug delivery systems for cytostatics, and more recently, for antibiotics. Such nanoantibiotics show improved antibacterial efficacy compared to the free drug and can be effective despite bacterial recalcitrance. In this work, we present a loading method of bacteriomimetic liposomes for a novel, hydrophobic compound (HIPS5031) inhibiting energy-coupling factor transporters (ECF transporters), an underexplored antimicrobial target. The liposomes were composed of DOPG (18:1 (Δ9-cis) phosphatidylglycerol) and CL (cardiolipin), resembling the cell membrane of Gram-positive Staphylococcus aureus and Streptococcus pneumoniae, and enriched with cholesterol (Chol). The size and polydispersity of the DOPG/CL/± Chol liposomes remained stable over 8 weeks when stored at 4 °C. Loading of the ECF transporter inhibitor was achieved by thin film hydration and led to a high encapsulation efficiency of 33.19% ± 9.5% into the DOPG/CL/Chol liposomes compared to the phosphatidylcholine liposomes (DMPC/DPPC). Bacterial growth inhibition assays on the model organism Bacillus subtilis revealed liposomal HIPS5031 as superior to the free drug, showing a 3.5-fold reduction in CFU/mL at a concentration of 9.64 µM. Liposomal HIPS5031 was also shown to reduce B. subtilis biofilm. Our findings present an explorative basis for bacteriomimetic liposomes as a strategy against drug-resistant pathogens by surpassing the drug-formulation barriers of innovative, yet unfavorably hydrophobic, antibiotics.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBacillus subtilisen_US
dc.subjectantibiotic resistanceen_US
dc.subjectbacteriomimeticen_US
dc.subjectcardiolipinen_US
dc.subjectenergy-coupling factor (ECF) transportersen_US
dc.subjectliposomesen_US
dc.subjectnanoantibioticsen_US
dc.titleBacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitor.en_US
dc.typeArticleen_US
dc.contributor.departmentHIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany.en_US
dc.identifier.journalPharmaceuticsen_US
dc.source.volume14
dc.source.issue1
refterms.dateFOA2022-02-11T15:05:10Z
dc.source.journaltitlePharmaceutics
dc.source.countrySwitzerland


Files in this item

Thumbnail
Name:
Drost et al.pdf
Size:
3.667Mb
Format:
PDF
Description:
Open Access publication

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International