Show simple item record

dc.contributor.authorBuck, Stefan
dc.contributor.authorPekarek, Lukas
dc.contributor.authorCaliskan, Neva
dc.date.accessioned2023-07-07T08:52:25Z
dc.date.available2023-07-07T08:52:25Z
dc.date.issued2022-06-30
dc.date.submitted2021-11-23
dc.identifier.citationBuck S, Pekarek L, Caliskan N. POTATO: Automated pipeline for batch analysis of optical tweezers data. Biophys J. 2022 Aug 2;121(15):2830-2839. doi: 10.1016/j.bpj.2022.06.030. Epub 2022 Jun 30. PMID: 35778838; PMCID: PMC9388390.en_US
dc.identifier.issn0006-3495
dc.identifier.pmid35778838
dc.identifier.doi10.1016/j.bpj.2022.06.030
dc.identifier.urihttp://hdl.handle.net/10033/623401
dc.descriptionOptical tweezers are a single-molecule technique that allows probing of intra- and intermolecular interactions that govern complex biological processes involving molecular motors, protein-nucleic acid interactions, and protein/RNA folding. Recent developments in instrumentation eased and accelerated optical tweezers data acquisition, but analysis of the data remains challenging. Here, to enable high-throughput data analysis, we developed an automated python-based analysis pipeline called POTATO (practical optical tweezers analysis tool). POTATO automatically processes the high-frequency raw data generated by force-ramp experiments and identifies (un)folding events using predefined parameters. After segmentation of the force-distance trajectories at the identified (un)folding events, sections of the curve can be fitted independently to a worm-like chain and freely jointed chain models, and the work applied on the molecule can be calculated by numerical integration. Furthermore, the tool allows plotting of constant force data and fitting of the Gaussian distance distribution over time. All these features are wrapped in a user-friendly graphical interface, which allows researchers without programming knowledge to perform sophisticated data analysis. The algorithm is written in python 3. We designed a GUI and wrapped the code into a Windows standalone executable with pyinstaller to open this tool to a broader audience without a bioinformatics background. The code is freely available on GitHub (https://github.com/REMI-HIRI/POTATO), and the architecture of the python files and GUI is further explained in the supporting material.en_US
dc.description.abstractOptical tweezers are a single-molecule technique that allows probing of intra- and intermolecular interactions that govern complex biological processes involving molecular motors, protein-nucleic acid interactions, and protein/RNA folding. Recent developments in instrumentation eased and accelerated optical tweezers data acquisition, but analysis of the data remains challenging. Here, to enable high-throughput data analysis, we developed an automated python-based analysis pipeline called POTATO (practical optical tweezers analysis tool). POTATO automatically processes the high-frequency raw data generated by force-ramp experiments and identifies (un)folding events using predefined parameters. After segmentation of the force-distance trajectories at the identified (un)folding events, sections of the curve can be fitted independently to a worm-like chain and freely jointed chain models, and the work applied on the molecule can be calculated by numerical integration. Furthermore, the tool allows plotting of constant force data and fitting of the Gaussian distance distribution over time. All these features are wrapped in a user-friendly graphical interface, which allows researchers without programming knowledge to perform sophisticated data analysis.en_US
dc.description.sponsorshipFunding details: European Research Council, ERC, 948636; Funding details: Helmholtz AssociationFunding text - 1:- We thank Vojtech Vrba for helpful python discussions. We thank Dr. Anke Sparmann for critically reviewing the manuscript. The work in our laboratory is supported by the Helmholtz Association and European Research Council (ERC) grant no. 948636en_US
dc.language.isoenen_US
dc.publisherElsevier, Cell Pressen_US
dc.relationinfo:eu-repo/grantAgreement/EC/T-FRAME (948636)en_US
dc.relation.ispartofseriesVol. 121, issue 15en_US
dc.relation.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85134187723&doi=10.1016%2fj.bpj.2022.06.030&partnerID=40&md5=6c9fad40204d2c01dedf008b8a658206en_US
dc.relation.urlhttps://www.biorxiv.org/content/biorxiv/early/2021/11/12/2021.11.11.468103.full.pdfen_US
dc.relation.urlhttps://github.com/REMI-HIRI/POTATOen_US
dc.rightsembargoedAccessen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNanotechnology / methodsen_US
dc.subjectOptical Tweezers*en_US
dc.subject.meshOptical Tweezers*en_US
dc.subject.meshNanotechnology / methodsen_US
dc.subject.meshProtein Foldingen_US
dc.subject.meshRNAen_US
dc.subject.meshSolanum tuberosum*en_US
dc.titlePOTATO: Automated pipeline for batch analysis of optical tweezers data.en_US
dc.typePreprinten_US
dc.typeSoftwareen_US
dc.typeOtheren_US
dc.identifier.eissn1542-0086
dc.contributor.departmentHelmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany ; Medical Faculty, Julius-Maximilians University Würzburg, Würzburg, Germanyen_US
dc.identifier.journalBiophysical journalen_US
dc.source.volume121
dc.source.issue15
dc.source.beginpage2830
dc.source.endpage2839
refterms.dateFOA2023-06-30T00:00:00Z
dc.source.journaltitleBiophysical journal
dc.source.countryUnited States


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
item_export_2023_Jul_07_1_1282 ...
Size:
5.520Mb
Format:
Unknown
Description:
whole publication and related ...
Thumbnail
Name:
POTATO_main_final.pdf
Size:
348.4Kb
Format:
PDF
Description:
final submitted manuscript after ...
Thumbnail
Name:
POTATO_suppl_final.pdf
Size:
673.8Kb
Format:
PDF
Description:
POTATO supplementary information
Thumbnail
Name:
Figure_01.jpg
Size:
750.1Kb
Format:
JPEG image
Description:
Figure 01
Thumbnail
Name:
Figure_02.jpg
Size:
378.2Kb
Format:
JPEG image
Description:
Figure 02
Thumbnail
Name:
Figure_03.jpg
Size:
1.350Mb
Format:
JPEG image
Description:
Figure 03
Thumbnail
Name:
Figure_04.jpg
Size:
449.7Kb
Format:
JPEG image
Description:
Figure 04

This item appears in the following Collection(s)

Show simple item record

embargoedAccess
Except where otherwise noted, this item's license is described as embargoedAccess