Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
1995Submitted date
2024-05-29
Metadata
Show full item recordAbstract
The term bioinformatics has two quite distinct meanings. It may describe information handling in living organisms, and it is widely used for the application of computer science to biological problems. It is this second area which is covered in this book. Theseriesof articles presented here represents a selection of the papers given at an invigorating conference on Bioinformatics/Computer Application in the Biosciences, held in October 1995 in Braunschweig at the German National Laboratory for Biotechnology. The development and use of computer applications in the biological sciences, thoughinitiated rather late compared to the situation in physics and chemistry, has reached a high standard nowadays and has becomean indispensable part of any research in this area. A strong impetus has come from modern gene sequencing projects and also from the rapid developmentin the field of structural biochemistry,i.e. the determination of protein and DNA/RNA3D-structures as well as rational protein engineering and design. This is reflected in the subjects coveredin the articles in this book. They describe the present state in this field, in particular the following facts become obvious: - The use and developmentof biological data bases has becomean essential foundation for research in protein science and molecular biology. - Whereas the coding regions of DNA have been the main target of research in the past, nowadays the non-coding regions and RNAare receiving closer attention. - The sequence comparison and correctalignment of protein sequencesis a prerequisite for any protein engineering. Although routinely used in almost all biochemistry laboratories, alignment of sequences with low homology still requiresfurther intensive research so that significantly better results can be producedthan those currently available. - The description and simulation of the interactions between different biological molecules will be one of the fascinating areas of future research. - In addition to understanding the biological processes on a molecular level, we have to simulate the metabolism in the living cell in order to achieve real metabolic design for the optimal biotechnological production of compounds. Whereasthe first development of these methods stems from the sixties and seventies,it is only recently that biologists, chemists and computer scientists have channelled their expertize into large scale collaborative projects aimed at the advancementin this exciting area. Government programs started, for example in Germany and the UK, have provided extra moneyfor joint projects involving computerscientists and biologists. Together with the rapid progress in modern biology and biotechnology, we can expect to see wide-ranging new developments in bioinformatics in the years to come.Citation
Bioinformatics - from nucleic acids and proteins to cell metabolism, I - IXAffiliation
GBF Gesellschaft für Biotechnologische Forschung mbH Molekulare und Instrumentelle Strukturforschung Mascheroder Weg1 D-38124 BraunschweigType
PrefaceLanguage
enSeries/Report no.
GBF monographs ; Volume 18ISSN
0930-4320ISBN
3527300724Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International