• Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400.

      Seeger, M; Timmis, K N; Hofer, B; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (1995-07)
      Metabolism of 21 chlorobiphenyls by the enzymes of the upper biphenyl catabolic pathway encoded by the bph locus of Pseudomonas sp. strain LB400 was investigated by using recombinant strains harboring gene cassettes containing bphABC or bphABCD. The enzymes of the upper pathway were generally able to metabolize mono- and dichlorinated biphenyls but only partially transform most trichlorinated congeners investigated: 14 of 15 mono- and dichlorinated and 2 of 6 trichlorinated congeners were converted into benzoates. All mono- and at least 8 of 12 dichlorinated congeners were attacked by the bphA-encoded biphenyl dioxygenase virtually exclusively at ortho and meta carbons. This enzyme exhibited a high degree of selectivity for the aromatic ring to be attacked, with the order of ring preference being non- > ortho- > meta- > para-substituted for mono- and dichlorinated congeners. The influence of the chlorine substitution pattern of the metabolized ring on benzoate formation resembled its influence on the reactivity of initial dioxygenation, suggesting that the rate of benzoate formation may frequently be determined by the rate of initial attack. The absorption spectra of phenylhexadienoates formed correlated with the presence or absence of a chlorine substituent at an ortho position.
    • Tumor necrosis factor alpha modulates the dynamics of the plasminogen-mediated early interaction between Bifidobacterium animalis subsp. lactis and human enterocytes.

      Centanni, Manuela; Bergmann, Simone; Turroni, Silvia; Hammerschmidt, Sven; Chhatwal, Gursharan Singh; Brigidi, Patrizia; Candela, Marco; Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy. (2012-04)
      The capacity to intervene with the host plasminogen system has recently been considered an important component in the interaction process between Bifidobacterium animalis subsp. lactis and the human host. However, its significance in the bifidobacterial microecology within the human gastrointestinal tract is still an open question. Here we demonstrate that human plasminogen favors the B. animalis subsp. lactis BI07 adhesion to HT29 cells. Prompting the HT29 cell capacity to activate plasminogen, tumor necrosis factor alpha (TNF-α) modulated the plasminogen-mediated bacterium-enterocyte interaction, reducing the bacterial adhesion to the enterocytes and enhancing migration to the luminal compartment.