• Characterization of JG024, a pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions.

      Garbe, Julia; Wesche, Andrea; Bunk, Boyke; Kazmierczak, Marlon; Selezska, Katherina; Rohde, Christine; Sikorski, Johannes; Rohde, Manfred; Jahn, Dieter; Schobert, Max (2010)
      Pseudomonas aeruginosa causes lung infections in patients suffering from the genetic disorder Cystic Fibrosis (CF). Once a chronic lung infection is established, P. aeruginosa cannot be eradicated by antibiotic treatment. Phage therapy is an alternative to treat these chronic P. aeruginosa infections. However, little is known about the factors which influence phage infection of P. aeruginosa under infection conditions and suitable broad host range phages.
    • Influence of internalin a murinisation on host resistance to orally acquired listeriosis in mice.

      Bergmann, Silke; Beard, Philippa M; Pasche, Bastian; Lienenklaus, Stefan; Weiss, Siegfried; Gahan, Cormac G M; Schughart, Klaus; Lengeling, Andreas; Infection and Immunity Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Edinburgh EH25 9RG, UK. andreas.lengeling@roslin.ed.ac.uk. (2013)
      The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of 'murinisation' to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation.
    • Sequencing and characterization of Pseudomonas aeruginosa phage JG004.

      Garbe, Julia; Bunk, Boyke; Rohde, Manfred; Schobert, Max; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2011)
      Phages could be an important alternative to antibiotics, especially for treatment of multiresistant bacteria as e.g. Pseudomonas aeruginosa. For an effective use of bacteriophages as antimicrobial agents, it is important to understand phage biology but also genes of the bacterial host essential for phage infection.