• Biofilm formation by Salmonella enterica serovar Typhimurium colonizing solid tumours.

      Crull, Katja; Rohde, Manfred; Westphal, Kathrin; Loessner, Holger; Wolf, Kathrin; Felipe-López, Alfonso; Hensel, Michael; Weiss, Siegfried (2011-08)
      Systemic administration of Salmonella enterica serovar Typhimurium to tumour bearing mice results in preferential colonization of the tumours and retardation of tumour growth. Although the bacteria are able to invade the tumour cells in vitro, in tumours they were never detected intracellularly. Ultrastructural analysis of Salmonella-colonized tumours revealed that the bacteria had formed biofilms. Interestingly, depletion of neutrophilic granulocytes drastically reduced biofilm formation. Obviously, bacteria form biofilms in response to the immune reactions of the host. Importantly, we tested Salmonella mutants that were no longer able to form biofilms by deleting central regulators of biofilm formation. Such bacteria could be observed intracellularly in immune cells of the host or in tumour cells. Thus, tumour colonizing S. typhimurium might form biofilms as protection against phagocytosis. Since other bacteria are behaving similarly, solid murine tumours might represent a unique model to study biofilm formation in vivo.
    • Differences in the aromatic domain of homologous streptococcal fibronectin-binding proteins trigger different cell invasion mechanisms and survival rates.

      Rohde, Manfred; Graham, Rikki M; Branitzki-Heinemann, Katja; Borchers, Patricia; Preuss, Claudia; Schleicher, Ina; Zähner, Dorothea; Talay, Susanne R; Fulde, Marcus; Dinkla, Katrin; et al. (2011-03)
      Group A streptococci (GAS, Streptococcus pyogenes) and Group G streptococci (GGS, Streptococcus dysgalactiae ssp. equisimilis) adhere to and invade host cells by binding to fibronectin. The fibronectin-binding protein SfbI from GAS acts as an invasin by using a caveolae-mediated mechanism. In the present study we have identified a fibronectin-binding protein, GfbA, from GGS, which functions as an adhesin and invasin. Although there is a high degree of similarity in the C-terminal sequence of SfbI and GfbA, the invasion mechanisms are different. Unlike caveolae-mediated invasion by SfbI-expressing GAS, the GfbA-expressing GGS isolate trigger cytoskeleton rearrangements. Heterologous expression of GfbA on the surface of a commensal Streptococcus gordonii and purified recombinant protein also triggered actin rearrangements. Expression of a truncated GfbA (lacking the aromatic domain) and chimeric GfbA/SfbI protein (replacing the aromatic domain of SfbI with the GfbA aromatic domain) on S. gordonii or recombinant proteins alone showed that the aromatic domain of GfbA is responsible for different invasion mechanisms. This is the first evidence for a biological function of the aromatic domain of fibronectin-binding proteins. Furthermore, we show that streptococci invading via cytoskeleton rearrangements and intracellular trafficking along the classical endocytic pathway are less persistence than streptococci entering via caveolae.
    • Experimental selection of long-term intracellular mycobacteria.

      Vázquez, Cristina L; Lerner, Thomas R; Kasmapour, Bahram; Pei, Gang; Gronow, Achim; Bianco, Maria V; Blanco, Federico C; Geffers, Robert; Geffers, Robert; Bigi, Fabiana; et al. (2014-09)
      Some intracellular bacteria are known to cause long-term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long-term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re-infection and also with the specific expression of stress- and survival-related genes. Our findings identify bacterial traits implicated in the establishment of long-term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments.
    • The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells.

      Amelung, Silva; Nerlich, Andreas; Rohde, Manfred; Spellerberg, Barbara; Cole, Jason N; Nizet, Victor; Chhatwal, Gursharan S; Talay, Susanne R; Department of Medical Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. (2011-08)
      Invasive serotype M3 Streptococcus pyogenes are among the most frequently isolated organisms from patients suffering from invasive streptococcal disease and have the potential to invade primary human endothelial cells (EC) via a rapid and efficient mechanism. FbaB protein, the fibronectin-binding protein expressed by M3 S. pyogenes, was herein identified as a potent invasin for EC. By combining heterologous gene expression with allelic replacement, we demonstrate that FbaB is essential and sufficient to trigger EC invasion via a Rac1-dependent phagocytosis-like uptake. FbaB-mediated uptake follows the classical endocytic pathway with lysosomal destination. FbaB is demonstrated to be a streptococcal invasin exhibiting EC tropism. FbaB thus initiates a process that may contribute to the deep tissue tropism and spread of invasive S. pyogenes isolates into the vascular EC lining.
    • Internalization, phagolysosomal biogenesis and killing of mycobacteria in enucleated epithelial cells.

      de Souza Carvalho, Cristiane; Kasmapour, Bahram; Gronow, Achim; Rohde, Manfred; Rabinovitch, Michel; Gutierrez, Maximiliano Gabriel; Department of Vaccinology and Applied Microbiology, Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2011-08)
      Bacterial and parasitic intracellular pathogens or their secreted products have been shown to induce host cell transcriptional responses, which may benefit the host, favour the microorganism or be unrelated to the infection. In most instances, however, it is not known if the host cell nucleus is proximately required for the development of an intracellular infection. This information can be obtained by the infection of artificially enucleated host cells (cytoplasts). This model, although rather extensively used in studies of viral infection, has only been applied to few bacterial pathogens, which do not include Mycobacterium spp. Here, we investigate the internalization, phagosome biogenesis and survival of M. smegmatis in enucleated type II alveolar epithelial cells. Cytoplasts were infected with M. smegmatis, but the percentage of infection was significantly lower than that of nucleated cells. Scanning electron microscopy indicated that in both cells and cytoplasts, bacteria were internalized by a phagocytosis-like mechanism. Interestingly, phagosome fusion with lysosomes and mycobacterial killing were both more efficient in enucleated than in nucleated cells, a finding that may be correlated with the increased number of autophagic vesicles developed in cytoplasts. We provide evidence that although quantitative changes were observed, the full development of the infection, as well as mycobacterial killing did not require the presence of the host cell nucleus.