• Impact of glutamine transporters on pneumococcal fitness under infection-related conditions.

      Härtel, Tobias; Klein, Matthias; Koedel, Uwe; Rohde, Manfred; Petruschka, Lothar; Hammerschmidt, Sven; Department of Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, D-17487 Greifswald, Germany. (2011-01)
      The genomic analysis of Streptococcus pneumoniae predicted six putative glutamine uptake systems, which are expressed under in vitro conditions, as shown here by reverse transcription-PCR. Four of these operons consist of glnHPQ, while two lack glnH, which encodes a soluble glutamine-binding protein. Here, we studied the impact of two of these glutamine ATP-binding cassette transporters on S. pneumoniae D39 virulence and phagocytosis, which consist of GlnQ and a translationally fused protein of GlnH and GlnP. Mice infected intranasally with D39Δgln0411/0412 showed significantly increased survival times and a significant delay in the development of pneumococcal pneumonia compared to those infected with D39, as observed in real time using bioluminescent pneumococci. In a mouse sepsis model, the mutant D39Δgln0411/0412 showed only moderate but significant attenuation. In contrast, the D39Δgln1098/1099 knockout strain was massively attenuated in the pneumonia and septicemia mouse infection model. To cause pneumonia or sepsis with D39Δgln1098/1099, infection doses 100- to 10,000-fold higher than those used for wild-type strain D39 were required. In an experimental mouse meningitis model, D39Δgln1098/1099 produced decreased levels of white blood cells in cerebrospinal fluid and showed decreased numbers of bacteria in the bloodstream compared to D39 and D39Δgln0411/0412. Phagocytosis experiments revealed significantly decreased intracellular survival rates of mutants D39Δgln1098/1099 and D39Δgln0411/0412 compared to wild-type D39, suggesting that the deficiency of Gln uptake systems impairs resistance to oxidative stress. Taken together, our results demonstrate that both glutamine uptake systems are required for full virulence of pneumococci but exhibit different impacts on the pathogenesis of pneumococci under in vivo conditions.
    • In situ analysis of sulfur species in sulfur globules produced from thiosulfate by Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes.

      Lee, Yong-Jin; Prange, Alexander; Lichtenberg, Henning; Rohde, Manfred; Dashti, Mona; Wiegel, Juergen; Department of Microbiology, The University of Georgia, Athens, GA 30602-2605, USA. (2007-10)
      The Firmicutes Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes convert thiosulfate, forming sulfur globules inside and outside cells. X-ray absorption near-edge structure analysis revealed that the sulfur consisted mainly of sulfur chains with organic end groups similar to sulfur formed in purple sulfur bacteria, suggesting the possibility that the process of sulfur globule formation by bacteria is an ancient feature.
    • Increased neutrophil extracellular trap-mediated Staphylococcus aureus clearance through inhibition of nuclease activity by clindamycin and immunoglobulin.

      Schilcher, Katrin; Andreoni, Federica; Uchiyama, Satoshi; Ogawa, Taiji; Schuepbach, Reto A; Zinkernagel, Annelies S; Helmholtz Centre for infection reseach, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-08-01)
      The Gram-positive human pathogen Staphylococcus aureus causes a variety of human diseases such as skin infections, pneumonia, and endocarditis. The micrococcal nuclease Nuc1 is one of the major S. aureus virulence factors and allows the bacterium to avoid neutrophil extracellular trap (NET)-mediated killing. We found that addition of the protein synthesis inhibitor clindamycin to S. aureus LAC cultures decreased nuc1 transcription and subsequently blunted nuclease activity in a molecular beacon-based fluorescence assay. We also observed reduced NET degradation through Nuc1 inhibition translating into increased NET-mediated clearance. Similarly, pooled human immunoglobulin specifically inhibited nuclease activity in a concentration-dependent manner. Inhibition of nuclease activity by clindamycin and immunoglobulin enhanced S. aureus clearance and should be considered in the treatment of S. aureus infections.
    • Influence of internalin a murinisation on host resistance to orally acquired listeriosis in mice.

      Bergmann, Silke; Beard, Philippa M; Pasche, Bastian; Lienenklaus, Stefan; Weiss, Siegfried; Gahan, Cormac G M; Schughart, Klaus; Lengeling, Andreas; Infection and Immunity Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Edinburgh EH25 9RG, UK. andreas.lengeling@roslin.ed.ac.uk. (2013)
      The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of 'murinisation' to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation.
    • Interaction of Listeria monocytogenes with mouse dendritic cells.

      Guzman, C A; Rohde, M; Chakraborty, T; Domann, E; Hudel, M; Wehland, J; Timmis, K N (1995-09)
    • Interferon-γ-inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages.

      Pei, Gang; Schnettger, Laura; Bronietzki, Marc; Repnik, Urska; Griffiths, Gareth; Gutierrez, Maximiliano Gabriel; Helmholtz Centre for infection research (HZI), 38124 Braunschweig, Germany. (2015-09-01)
      Little is known about the molecular players that regulate changes in the endocytic pathway during immune activation. Here we investigate the role of Rab20 in the endocytic pathway during activation of macrophages. Rab20 is associated with endocytic structures, but the function of this Rab GTPase in the endocytic pathway remains poorly characterized. We find that in macrophages, Rab20 expression and endosomal association significantly increase after interferon-γ (IFN-γ) treatment. Moreover, IFN-γ and Rab20 expression induce a dramatic enlargement of endosomes. These enlarged endosomes are the result of homotypic fusion promoted by Rab20 expression. The expression of Rab20 or the dominant-negative mutant Rab20T19N does not affect transferrin or dextran 70 kDa uptake. However, knockdown of Rab20 accelerates epidermal growth factor (EGF) trafficking to LAMP-2-positive compartments and EGF receptor degradation. Thus this work defines a function for Rab20 in the endocytic pathway during immune activation of macrophages.
    • Internalization, phagolysosomal biogenesis and killing of mycobacteria in enucleated epithelial cells.

      de Souza Carvalho, Cristiane; Kasmapour, Bahram; Gronow, Achim; Rohde, Manfred; Rabinovitch, Michel; Gutierrez, Maximiliano Gabriel; Department of Vaccinology and Applied Microbiology, Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2011-08)
      Bacterial and parasitic intracellular pathogens or their secreted products have been shown to induce host cell transcriptional responses, which may benefit the host, favour the microorganism or be unrelated to the infection. In most instances, however, it is not known if the host cell nucleus is proximately required for the development of an intracellular infection. This information can be obtained by the infection of artificially enucleated host cells (cytoplasts). This model, although rather extensively used in studies of viral infection, has only been applied to few bacterial pathogens, which do not include Mycobacterium spp. Here, we investigate the internalization, phagosome biogenesis and survival of M. smegmatis in enucleated type II alveolar epithelial cells. Cytoplasts were infected with M. smegmatis, but the percentage of infection was significantly lower than that of nucleated cells. Scanning electron microscopy indicated that in both cells and cytoplasts, bacteria were internalized by a phagocytosis-like mechanism. Interestingly, phagosome fusion with lysosomes and mycobacterial killing were both more efficient in enucleated than in nucleated cells, a finding that may be correlated with the increased number of autophagic vesicles developed in cytoplasts. We provide evidence that although quantitative changes were observed, the full development of the infection, as well as mycobacterial killing did not require the presence of the host cell nucleus.
    • Intracellular Survival of Streptococcus pyogenes in Polymorphonuclear Cells Results in Increased Bacterial Virulence

      Medina, Eva; Rohde, Manfred; Chhatwal, Gursharan S. (American Society for Microbiology, 2003-09)
    • Intranasal Vaccination with Streptococcal Fibronectin Binding Protein Sfb1 Fails To Prevent Growth and Dissemination of Streptococcus pyogenes in a Murine Skin Infection Model

      McArthur, J.; Medina, Eva; Mueller, A.; Chin, J.; Currie, B. J.; Sriprakash, K. S.; Talay, S. R.; Chhatwal, G. S.; Walker, M. J. (American Society for Microbiology, 2004-12)
    • Invasion mechanisms of Gram-positive pathogenic cocci.

      Nitsche-Schmitz, D Patric; Rohde, Manfred; Chhatwal, Gursharan S; Helmholtz Centre for Infection Research, Microbial Pathogenesis, Braunschweig, Germany. (2007-09)
      Gram-positive cocci are important human pathogens. Streptococci and staphylococci in particular are a major threat to human health, since they cause a variety of serious invasive infections. Their invasion into normally sterile sites of the host depends on elaborated bacterial mechanisms that involve adhesion to the host tissue, its degradation, internalisation by host cells, and passage through epithelia and endothelia. Interactions of bacterial surface proteins with proteins of the host's extracellular matrix as well as with cell surface receptors are crucial factors in these processes, and some of the key mechanisms are similar in many pathogenic Gram-positive cocci. Therapies that interfere with these mechanisms may become efficient alternatives to today's antibiotic treatments.
    • Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009.

      von Jan, Mathias; Riegger, Nicole; Pötter, Gabriele; Schumann, Peter; Verbarg, Susanne; Spröer, Cathrin; Rohde, Manfred; Lauer, Bettina; Labeda, David P; Klenk, Hans-Peter (2011-09)
      A Gram-positive, spore-forming, aerobic, filamentous bacterium, strain JFMB-ATE(T), was isolated in 2008 during environmental screening of a plastic surface in grade C in a contract manufacturing organization in southern Germany. The isolate grew at temperatures of 25-50 °C and at pH 5.0-8.5, forming ivory-coloured colonies with sparse white aerial mycelia. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the family Thermoactinomycetaceae, except that the cell-wall peptidoglycan contained LL-diaminopimelic acid, while all previously described members of this family display this diagnostic diamino acid in meso-conformation. The DNA G+C content of the novel strain was 54.6 mol%, the main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol, and the major menaquinone was MK-7. The major fatty acids had saturated C₁₄-C₁₆ branched chains. No diagnostic sugars were detected. Based on the chemotaxonomic results and 16S rRNA gene sequence analysis, the isolate is proposed to represent a novel genus and species, Kroppenstedtia eburnea gen. nov. sp. nov. The type strain is JFMB-ATE(T) ( = DSM 45196(T)  = NRRL B-24804(T)  = CCUG 59226(T)).
    • Live Helicobacter pylori in the root canal of endodontic-infected deciduous teeth.

      Hirsch, Christian; Tegtmeyer, Nicole; Rohde, Manfred; Rowland, Marion; Oyarzabal, Omar A; Backert, Steffen; Department of Paediatric Dentistry, University School of Dental Medicine, University of Leipzig, Nuernberger Straße 57, 04103, Leipzig, Germany. Christian.Hirsch@medizin.uni-leipzig.de (2012-08)
      Many polymerase chain reaction (PCR)-based studies have shown that Helicobacter pylori DNA is prevalent in the oral cavity, but reports on the isolation of live bacteria are extremely rare. Thus, it is still unclear whether H. pylori can indeed survive in the oral environment.
    • Localization of the ActA polypeptide of Listeria monocytogenes in infected tissue culture cell lines: ActA is not associated with actin "comets".

      Niebuhr, K; Chakraborty, T; Rohde, Manfred; Gazlig, T; Jansen, B; Köllner, P; Wehland, J (1993-07)
      Images
    • Localization of the C3-Like ADP-ribosyltransferase from Staphylococcus aureus during bacterial invasion of mammalian cells.

      Molinari, Gabriella; Rohde, Manfred; Wilde, Christian; Just, Ingo; Aktories, Klaus; Chhatwal, Gursharan S; Department of Microbial Pathogenesis, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany. (2006-06)
      The C3stau2 exoenzyme from Staphylococcus aureus is a C3-like ADP-ribosyltransferase which possesses no specific receptor-binding domain or translocation unit required for entry in target cells where its substrate is located. Here we show that C3stau2 can reach its target after invasion of staphylococci in eukaryotic cells without needing translocation.
    • Low-density lipoprotein receptor-related protein-1 mediates endocytic clearance of tissue inhibitor of metalloproteinases-1 and promotes its cytokine-like activities.

      Thevenard, Jessica; Verzeaux, Laurie; Devy, Jerôme; Etique, Nicolas; Jeanne, Albin; Schneider, Christophe; Hachet, Cathy; Ferracci, Géraldine; David, Marion; Martiny, Laurent; et al. (2014)
      Tissue inhibitor of metalloproteinases-1 (TIMP-1) regulates the extracellular matrix turnover by inhibiting the proteolytic activity of matrix metalloproteinases (MMPs). TIMP-1 also displays MMP-independent activities that influence the behavior of various cell types including neuronal plasticity, but the underlying molecular mechanisms remain mostly unknown. The trans-membrane receptor low-density lipoprotein receptor-related protein-1 (LRP-1) consists of a large extracellular chain with distinct ligand-binding domains that interact with numerous ligands including TIMP-2 and TIMP-3 and a short transmembrane chain with intracellular motifs that allow endocytosis and confer signaling properties to LRP-1. We addressed TIMP-1 interaction with recombinant ligand-binding domains of LRP-1 expressed by CHO cells for endocytosis study, or linked onto sensor chips for surface plasmon resonance analysis. Primary cortical neurons bound and internalized endogenous TIMP-1 through a mechanism mediated by LRP-1. This resulted in inhibition of neurite outgrowth and increased growth cone volume. Using a mutated inactive TIMP-1 variant we showed that TIMP-1 effect on neurone morphology was independent of its MMP inhibitory activity. We conclude that TIMP-1 is a new ligand of LRP-1 and we highlight a new example of its MMP-independent, cytokine-like functions.