• In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures.

      Ganzlin, Markus; Marose, Stefan; Lu, Xin; Hitzmann, Bernd; Scheper, Thomas; Rinas, Ursula; Helmholtz Centre for Infection Research (former German Research Centre for Biotechnology - GBF), Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-12-01)
      The production of a mutant green fluorescent protein (S65TGFP), controlled by the maltose inducible glucoamylase promoter, was followed in situ in fed-batch cultures of recombinant Aspergillus niger using multi-wavelength fluorescence spectroscopy. Disturbance of quantitative product analysis by interfering fluorescence signals was resolved by using a set of defined combinations of excitation and emission wavelengths (lambda(ex)/lambda(em)). This technique resulted in excellent linearity between on-line signal and off-line determined S65TGFP concentrations. Spore germination was detectable in situ by monitoring the back scattered light intensity. Moreover, flavin-like fluorophores were identified as the dominating fungal host fluorophores. The time-dependent intensity of this fluorophore, potentially fungal flavin-containing oxidoreductase(s), did not correlate with the biomass concentration but correlated well with the fungal metabolic activity (e.g. respiratory activity). Other fluorophores commonly found in microbial cultures such NADH, pyridoxine and the aromatic amino acids, tryptophan, phenylalanine and tyrosine did not contribute significantly to the culture fluorescence of A. niger. Thus, multi-wavelength fluorescence spectroscopy has proven to be an effective tool for simultaneous on-line monitoring of the most relevant process variables in fungal cultures, e.g. spore germination, metabolic activity, and quantitative product formation.
    • Streamlining homogeneous glycoprotein production for biophysical and structural applications by targeted cell line development.

      Wilke, Sonja; Groebe, Lothar; Maffenbeier, Vitali; Jäger, Volker; Gossen, Manfred; Josewski, Jörn; Duda, Agathe; Polle, Lilia; Owens, Raymond J; Wirth, Dagmar; et al. (2011)
      Studying the biophysical characteristics of glycosylated proteins and solving their three-dimensional structures requires homogeneous recombinant protein of high quality.We introduce here a new approach to produce glycoproteins in homogenous form with the well-established, glycosylation mutant CHO Lec3.2.8.1 cells. Using preparative cell sorting, stable, high-expressing GFP 'master' cell lines were generated that can be converted fast and reliably by targeted integration via Flp recombinase-mediated cassette exchange (RMCE) to produce any glycoprotein. Small-scale transient transfection of HEK293 cells was used to identify genetically engineered constructs suitable for constructing stable cell lines. Stable cell lines expressing 10 different proteins were established. The system was validated by expression, purification, deglycosylation and crystallization of the heavily glycosylated luminal domains of lysosome-associated membrane proteins (LAMP).