• Discontinuous and continuous separation of the monomeric and dimeric forms of human bone morphogenetic protein-2 from renaturation batches.

      Gueorguieva, Ludmila; Vallejo, Luis Felipe; Rinas, Ursula; Seidel-Morgenstern, Andreas; Otto-von-Guericke-Universität Magdeburg, Institut für Verfahrenstechnik, PO Box 4120, D-39106 Magdeburg, Germany. (2006-12-01)
      Bone morphogenetic protein-2 (BMP-2) is one of the most interesting of the approximately 14 BMPs which belong to the transforming-growth-factor-beta (TGF-beta) superfamily. BMP-2 induces bone formation and thus plays an important role as a pharmaceutical protein. Recently, rhBMP-2 has been produced in form of inactive inclusion bodies in Escherichia coli. After solubilization and renaturation the biologically active dimeric form of rhBMP-2 can be generated. However, inactive monomers of BMP-2 are also formed during the renaturation process which must be separated from the active dimeric BMP-2. The purpose of this paper is to present: (a) results of an experimental study of a chromatographic separation of the monomeric and dimeric forms; and (b) a concept for a continuous counter-current simulated moving bed (SMB) process. The capacity of heparin as stationary phase was estimated for different salt concentrations in the mobile phase. A simulation study of a three-zone SMB process was performed applying a two step salt gradient. The results reveal the potential of the process for the purification of the dimeric BMP-2.
    • Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB.

      Niemann, Hartmut H; Jäger, Volker; Butler, P Jonathan G; van den Heuvel, Joop; Schmidt, Sabine; Ferraris, Davide; Gherardi, Ermanno; Heinz, Dirk W; Division of Structural Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2007-07-27)
      The tyrosine kinase Met, the product of the c-met proto-oncogene and the receptor for hepatocyte growth factor/scatter factor (HGF/SF), mediates signals critical for cell survival and migration. The human pathogen Listeria monocytogenes exploits Met signaling for invasion of host cells via its surface protein InlB. We present the crystal structure of the complex between a large fragment of the human Met ectodomain and the Met-binding domain of InlB. The concave face of the InlB leucine-rich repeat region interacts tightly with the first immunoglobulin-like domain of the Met stalk, a domain which does not bind HGF/SF. A second contact between InlB and the Met Sema domain locks the otherwise flexible receptor in a rigid, signaling competent conformation. Full Met activation requires the additional C-terminal domains of InlB which induce heparin-mediated receptor clustering and potent signaling. Thus, although it elicits a similar cellular response, InlB is not a structural mimic of HGF/SF.