• Discontinuous and continuous separation of the monomeric and dimeric forms of human bone morphogenetic protein-2 from renaturation batches.

      Gueorguieva, Ludmila; Vallejo, Luis Felipe; Rinas, Ursula; Seidel-Morgenstern, Andreas; Otto-von-Guericke-Universität Magdeburg, Institut für Verfahrenstechnik, PO Box 4120, D-39106 Magdeburg, Germany. (2006-12-01)
      Bone morphogenetic protein-2 (BMP-2) is one of the most interesting of the approximately 14 BMPs which belong to the transforming-growth-factor-beta (TGF-beta) superfamily. BMP-2 induces bone formation and thus plays an important role as a pharmaceutical protein. Recently, rhBMP-2 has been produced in form of inactive inclusion bodies in Escherichia coli. After solubilization and renaturation the biologically active dimeric form of rhBMP-2 can be generated. However, inactive monomers of BMP-2 are also formed during the renaturation process which must be separated from the active dimeric BMP-2. The purpose of this paper is to present: (a) results of an experimental study of a chromatographic separation of the monomeric and dimeric forms; and (b) a concept for a continuous counter-current simulated moving bed (SMB) process. The capacity of heparin as stationary phase was estimated for different salt concentrations in the mobile phase. A simulation study of a three-zone SMB process was performed applying a two step salt gradient. The results reveal the potential of the process for the purification of the dimeric BMP-2.
    • Expression of protein complexes using multiple Escherichia coli protein co-expression systems: a benchmarking study.

      Busso, Didier; Peleg, Yoav; Heidebrecht, Tatjana; Romier, Christophe; Jacobovitch, Yossi; Dantes, Ada; Salim, Loubna; Troesch, Edouard; Schuetz, Anja; Heinemann, Udo; et al. (2011-08)
      Escherichia coli (E. coli) remains the most commonly used host for recombinant protein expression. It is well known that a variety of experimental factors influence the protein production level as well as the solubility profile of over-expressed proteins. This becomes increasingly important for optimizing production of protein complexes using co-expression strategies. In this study, we focus on the effect of the choice of the expression vector system: by standardizing experimental factors including bacterial strain, cultivation temperature and growth medium composition, we compare the effectiveness of expression technologies used by the partners of the Structural Proteomics in Europe 2 (SPINE2-complexes) consortium. Four different protein complexes, including three binary and one ternary complex, all known to be produced in the soluble form in E. coli, are used as the benchmark targets. The respective genes were cloned by each partner into their preferred set of vectors. The resulting constructs were then used for comparative co-expression analysis done in parallel and under identical conditions at a single site. Our data show that multiple strategies can be applied for the expression of protein complexes in high yield. While there is no 'silver bullet' approach that was infallible even for this small test set, our observations are useful as a guideline to delineate co-expression strategies for particular protein complexes.
    • Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.

      Rinas, Ursula; Hoffmann, Frank; Betiku, Eriola; Estapé, David; Marten, Sabine; Biochemical Engineering Division, GBF German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany. URI@gbf.de (2007-01-01)
      During production in recombinant Escherichia coli, the human basic fibroblast growth factor (hFGF-2) partly aggregates into stable cytoplasmic inclusion bodies. These inclusion bodies additionally contain significant amounts of the heat-shock chaperone DnaK, and putative DnaK substrates such as the elongation factor Tu (ET-Tu) and the metabolic enzymes dihydrolipoamide dehydrogenase (LpdA), tryptophanase (TnaA), and d-tagatose-1,6-bisphosphate aldolase (GatY). Guanidinium hydrochloride induced disaggregation studies carried out in vitro on artificial aggregates generated through thermal aggregation of purified hFGF-2 revealed identical disaggregation profiles as hFGF-2 inclusion bodies indicating that the heterogenic composition of inclusion bodies did not influence the strength of interactions of hFGF-2 in aggregates formed in vivo as inclusion bodies compared to those generated in vitro from native and pure hFGF-2 through thermal aggregation. Compared to unfolding of native hFGF-2, higher concentrations of denaturant were required to dissolve hFGF-2 aggregates showing that more energy is required for disruption of interactions in both types of protein aggregates compared to the unfolding of the native protein. In vivo dissolution of hFGF-2 inclusion bodies was studied through coexpression of chaperones of the DnaK and GroEL family and ClpB and combinations thereof. None of the chaperone combinations was able to completely prevent the initial formation of inclusion bodies, but upon prolonged incubation mediated disaggregation of otherwise stable inclusion bodies. The GroEL system was particularly efficient in inclusion body dissolution but did not lead to a corresponding increase in soluble hFGF-2 rather was promoting the proteolysis of the recombinant growth factor. Coproduction of the disaggregating DnaK system and ClpB in conjunction with small amounts of the chaperonins GroELS was most efficient in disaggregation with concomitant formation of soluble hFGF-2. Thus, fine-balanced coproduction of chaperone combinations can play an important role in the production of soluble recombinant proteins with a high aggregation propensity not through prevention of aggregation but predominantly through their disaggregating properties.
    • Juxtanodin is an intrinsically disordered F-actin-binding protein.

      Ruskamo, Salla; Chukhlieb, Maryna; Vahokoski, Juha; Bhargav, Saligram Prabhakar; Liang, Fengyi; Kursula, Inari; Kursula, Petri (2012)
      Juxtanodin, also called ermin, is an F-actin-binding protein expressed by oligodendrocytes, the myelin-forming cells of the central nervous system. While juxtanodin carries a short conserved F-actin-binding segment at its C terminus, it otherwise shares no similarity with known protein sequences. We carried out a structural characterization of recombinant juxtanodin in solution. Juxtanodin turned out to be intrinsically disordered, as evidenced by conventional and synchrotron radiation CD spectroscopy. Small-angle X-ray scattering indicated that juxtanodin is a monomeric, highly elongated, unfolded molecule. Ensemble optimization analysis of the data suggested also the presence of more compact forms of juxtanodin. The C terminus was a strict requirement for co-sedimentation of juxtanodin with microfilaments, but juxtanodin had only mild effects on actin polymerization. The disordered nature of juxtanodin may predict functions as a protein interaction hub, although F-actin is its only currently known binding partner.
    • Preliminary crystallographic analysis of the N-terminal PDZ-like domain of periaxin, an abundant peripheral nerve protein linked to human neuropathies.

      Han, Huijong; Kursula, Petri (2013-07)
      Periaxin (PRX) is an abundant protein in peripheral nerves and contains a predicted PDZ-like domain at its N-terminus. The large isoform, L-PRX, is required for the maintenance of myelin in the peripheral nervous system and its defects cause neurological disease. Here, the human periaxin PDZ-like domain was crystallized and X-ray diffraction data were collected to 2.85 Å resolution using synchrotron radiation. The crystal belonged to the primitive hexagonal space group P3121 or P3221, with unit-cell parameters a = b = 80.6, c = 81.0 Å, γ = 120° and either two or three molecules in the asymmetric unit. The structure of PRX will shed light on its poorly characterized function in the nervous system.
    • Recombinant production of Yersinia enterocolitica pyruvate kinase isoenzymes PykA and PykF.

      Hofmann, Julia; Heider, Christine; Li, Wei; Krausze, Joern; Roessle, Manfred; Wilharm, Gottfried; Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany. (2013-04)
      The glycolytic enzyme pyruvate kinase (PK) generates ATP from ADP through substrate-level phosphorylation powered by the conversion of phosphoenolpyruvate to pyruvate. In contrast to other bacteria, Enterobacteriaceae, such as pathogenic yersiniae, harbour two pyruvate kinases encoded by pykA and pykF. The individual roles of these isoenzymes are poorly understood. In an attempt to make the Yersinia enterocolitica pyruvate kinases PykA and PykF amenable to structural and functional characterisation, we produced them untagged in Escherichia coli and purified them to near homogeneity through a combination of ion exchange and size exclusion chromatography, yielding more than 180 mg per litre of batch culture. The solution structure of PykA and PykF was analysed through small angle X-ray scattering which revealed the formation of PykA and PykF tetramers and confirmed the binding of the allosteric effector fructose-1,6-bisphosphate (FBP) to PykF but not to PykA.
    • Streamlining homogeneous glycoprotein production for biophysical and structural applications by targeted cell line development.

      Wilke, Sonja; Groebe, Lothar; Maffenbeier, Vitali; Jäger, Volker; Gossen, Manfred; Josewski, Jörn; Duda, Agathe; Polle, Lilia; Owens, Raymond J; Wirth, Dagmar; et al. (2011)
      Studying the biophysical characteristics of glycosylated proteins and solving their three-dimensional structures requires homogeneous recombinant protein of high quality.We introduce here a new approach to produce glycoproteins in homogenous form with the well-established, glycosylation mutant CHO Lec3.2.8.1 cells. Using preparative cell sorting, stable, high-expressing GFP 'master' cell lines were generated that can be converted fast and reliably by targeted integration via Flp recombinase-mediated cassette exchange (RMCE) to produce any glycoprotein. Small-scale transient transfection of HEK293 cells was used to identify genetically engineered constructs suitable for constructing stable cell lines. Stable cell lines expressing 10 different proteins were established. The system was validated by expression, purification, deglycosylation and crystallization of the heavily glycosylated luminal domains of lysosome-associated membrane proteins (LAMP).
    • Thermodynamically reengineering the listerial invasion complex InlA/E-cadherin.

      Wollert, Thomas; Heinz, Dirk W; Schubert, Wolf-Dieter; Molecular Host-Pathogen Interactions, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2007-08-28)
      Biological processes essentially all depend on the specific recognition between macromolecules and their interaction partners. Although many such interactions have been characterized both structurally and biophysically, the thermodynamic effects of small atomic changes remain poorly understood. Based on the crystal structure of the bacterial invasion protein internalin (InlA) of Listeria monocytogenes in complex with its human receptor E-cadherin (hEC1), we analyzed the interface to identify single amino acid substitutions in InlA that would potentially improve the overall quality of interaction and hence increase the weak binding affinity of the complex. Dissociation constants of InlA-variant/hEC1 complexes, as well as enthalpy and entropy of binding, were quantified by isothermal titration calorimetry. All single substitutions indeed significantly increase binding affinity. Structural changes were verified crystallographically at < or =2.0-A resolution, allowing thermodynamic characteristics of single substitutions to be rationalized structurally and providing unique insights into atomic contributions to binding enthalpy and entropy. Structural and thermodynamic data of all combinations of individual substitutions result in a thermodynamic network, allowing the source of cooperativity between distant recognition sites to be identified. One such pair of single substitutions improves affinity 5,000-fold. We thus demonstrate that rational reengineering of protein complexes is possible by making use of physically distant hot spots of recognition.