• Crystal structures explain functional differences in the two actin depolymerization factors of the malaria parasite.

      Singh, Bishal K; Sattler, Julia M; Chatterjee, Moon; Huttu, Jani; Schüler, Herwig; Kursula, Inari (2011-08-12)
      Apicomplexan parasites, such as the malaria-causing Plasmodium, utilize an actin-based motor for motility and host cell invasion. The actin filaments of these parasites are unusually short, and actin polymerization is under strict control of a small set of regulatory proteins, which are poorly conserved with their mammalian orthologs. Actin depolymerization factors (ADFs) are among the most important actin regulators, affecting the rates of filament turnover in a multifaceted manner. Plasmodium has two ADFs that display low sequence homology with each other and with the higher eukaryotic family members. Here, we show that ADF2, like canonical ADF proteins but unlike ADF1, binds to both globular and filamentous actin, severing filaments and inducing nucleotide exchange on the actin monomer. The crystal structure of Plasmodium ADF1 shows major differences from the ADF consensus, explaining the lack of F-actin binding. Plasmodium ADF2 structurally resembles the canonical members of the ADF/cofilin family.
    • Nonomuraea rosea sp. nov.

      Kämpfer, Peter; Busse, Hans-Jürgen; Tindall, Brian J; Nimtz, Manfred; Grün-Wollny, Iris; Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany. peter.kaempfer@umwelt.uni-giessen.de (2010-05)
      A Gram-positively staining, aerobic, non-motile actinomycete, strain GW 12687(T), that formed rose-pigmented colonies and branched substrate and aerial mycelia was studied in detail for its taxonomic position. On the basis of 16S rRNA gene sequence similarity studies, strain GW 12687(T) was grouped into the genus Nonomuraea, being most closely related to Nonomuraea dietziae (97.6 %), Nonomuraea africana (97.1 %), and Nonomuraea kuesteri (97.1 %). The 16S rRNA gene sequence similarity to other species of the genus Nonomuraea was < or =97 %. The chemotaxonomic characterization supported allocation of the strain to the genus Nonomuraea. The major menaquinone was MK-9(H(4)) with minor amounts of MK-9(H(2)), MK-9(H(6)), MK-9(H(0)) and MK-8(H(4)). The polar lipid profile contained the major compound diphosphatidylglycerol, moderate amounts of phosphatidylmonomethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, hydroxy-phosphatidylmonomethylethanolamine, and an unknown aminophosphoglycolipid. Phosphatidylinositol mannosides and phosphatidylinositol were also present. The major fatty acids were iso- and anteiso- and 10-methyl-branched fatty acids. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain GW 12687(T) from closely related species. Thus, GW 12687(T) represents a novel species of the genus Nonomuraea, for which the name Nonomuraea rosea sp. nov. is proposed, with GW 12687(T) (=DSM 45177(T) =CCUG 56107(T)) as the type strain.