• Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger

      el-Enshasy, Hesham; Kleine, Joachim; Rinas, Ursula; Helmholtz zENTRUM FÜR iNFEKTIONSFORSCHUNG (2006-10)
    • Discontinuous and continuous separation of the monomeric and dimeric forms of human bone morphogenetic protein-2 from renaturation batches.

      Gueorguieva, Ludmila; Vallejo, Luis Felipe; Rinas, Ursula; Seidel-Morgenstern, Andreas; Otto-von-Guericke-Universität Magdeburg, Institut für Verfahrenstechnik, PO Box 4120, D-39106 Magdeburg, Germany. (2006-12-01)
      Bone morphogenetic protein-2 (BMP-2) is one of the most interesting of the approximately 14 BMPs which belong to the transforming-growth-factor-beta (TGF-beta) superfamily. BMP-2 induces bone formation and thus plays an important role as a pharmaceutical protein. Recently, rhBMP-2 has been produced in form of inactive inclusion bodies in Escherichia coli. After solubilization and renaturation the biologically active dimeric form of rhBMP-2 can be generated. However, inactive monomers of BMP-2 are also formed during the renaturation process which must be separated from the active dimeric BMP-2. The purpose of this paper is to present: (a) results of an experimental study of a chromatographic separation of the monomeric and dimeric forms; and (b) a concept for a continuous counter-current simulated moving bed (SMB) process. The capacity of heparin as stationary phase was estimated for different salt concentrations in the mobile phase. A simulation study of a three-zone SMB process was performed applying a two step salt gradient. The results reveal the potential of the process for the purification of the dimeric BMP-2.
    • In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures.

      Ganzlin, Markus; Marose, Stefan; Lu, Xin; Hitzmann, Bernd; Scheper, Thomas; Rinas, Ursula; Helmholtz Centre for Infection Research (former German Research Centre for Biotechnology - GBF), Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-12-01)
      The production of a mutant green fluorescent protein (S65TGFP), controlled by the maltose inducible glucoamylase promoter, was followed in situ in fed-batch cultures of recombinant Aspergillus niger using multi-wavelength fluorescence spectroscopy. Disturbance of quantitative product analysis by interfering fluorescence signals was resolved by using a set of defined combinations of excitation and emission wavelengths (lambda(ex)/lambda(em)). This technique resulted in excellent linearity between on-line signal and off-line determined S65TGFP concentrations. Spore germination was detectable in situ by monitoring the back scattered light intensity. Moreover, flavin-like fluorophores were identified as the dominating fungal host fluorophores. The time-dependent intensity of this fluorophore, potentially fungal flavin-containing oxidoreductase(s), did not correlate with the biomass concentration but correlated well with the fungal metabolic activity (e.g. respiratory activity). Other fluorophores commonly found in microbial cultures such NADH, pyridoxine and the aromatic amino acids, tryptophan, phenylalanine and tyrosine did not contribute significantly to the culture fluorescence of A. niger. Thus, multi-wavelength fluorescence spectroscopy has proven to be an effective tool for simultaneous on-line monitoring of the most relevant process variables in fungal cultures, e.g. spore germination, metabolic activity, and quantitative product formation.
    • In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques.

      Ganzlin, Markus; Rinas, Ursula; Helmholtz Centre for Infection Research, (Former German Research Centre for Biotechnology, GBF), Inhoffenstrasse 7, Braunschweig, Germany. (2008-06-30)
      An in-depth characterization of the Aspergillus niger glucoamylase (glaA) promoter performance was carried out on defined medium employing multi-well high-throughput screening as well as controlled batch and fed-batch bioreactor culture techniques with GFP as a fluorescent reporter protein. A variety of metabolizable carbon substrates and non-metabolizable analogs were screened with regard to their effect on the glaA expression system. The results clearly demonstrate that only starch and its hydrolytic products, including glucose, act as inducers. However, induction of the glaA expression system through the monosaccharide glucose is significantly lower compared to starch and the higher molecular weight starch degradation products. All other 26 carbon substrates tested do not induce, or even, as in the case of the easily metabolizable monosaccharide xylose, repress glaA-promoter controlled gene expression in the presence of the inducing disaccharide maltose with an increase of repression strength by increasing xylose concentrations. The complex effect of glucose on glaA-promoter controlled expression was also analyzed using non-metabolizable glucose analogs, namely 5-thio-glucose and 2-deoxyglucose, which were identified as novel and potent inducers of the glaA expression system. The results show that the induction strength depends on the inducer concentration with a maximum at defined concentrations and lower induction or even repression at concentrations above. Moreover, controlled fed-batch cultivations using a high maltose feed rate with concomitant extracellular accumulation of glucose resulted in lower levels of the reporter protein compared to cultures with a low-maltose feed rate without extracellular glucose accumulation, thus supporting the conclusion that increasing the glucose concentration beyond a critical point reduces the induction strength or may even cause repression. This way, the speed of polymer hydrolysis, glucose uptake and intracellular breakdown can be fine-tuned for optimal fungal growth and the metabolic burden for glucoamylase synthesis can be limited adequately in response to nutrient availability.
    • Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.

      Rinas, Ursula; Hoffmann, Frank; Betiku, Eriola; Estapé, David; Marten, Sabine; Biochemical Engineering Division, GBF German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany. URI@gbf.de (2007-01-01)
      During production in recombinant Escherichia coli, the human basic fibroblast growth factor (hFGF-2) partly aggregates into stable cytoplasmic inclusion bodies. These inclusion bodies additionally contain significant amounts of the heat-shock chaperone DnaK, and putative DnaK substrates such as the elongation factor Tu (ET-Tu) and the metabolic enzymes dihydrolipoamide dehydrogenase (LpdA), tryptophanase (TnaA), and d-tagatose-1,6-bisphosphate aldolase (GatY). Guanidinium hydrochloride induced disaggregation studies carried out in vitro on artificial aggregates generated through thermal aggregation of purified hFGF-2 revealed identical disaggregation profiles as hFGF-2 inclusion bodies indicating that the heterogenic composition of inclusion bodies did not influence the strength of interactions of hFGF-2 in aggregates formed in vivo as inclusion bodies compared to those generated in vitro from native and pure hFGF-2 through thermal aggregation. Compared to unfolding of native hFGF-2, higher concentrations of denaturant were required to dissolve hFGF-2 aggregates showing that more energy is required for disruption of interactions in both types of protein aggregates compared to the unfolding of the native protein. In vivo dissolution of hFGF-2 inclusion bodies was studied through coexpression of chaperones of the DnaK and GroEL family and ClpB and combinations thereof. None of the chaperone combinations was able to completely prevent the initial formation of inclusion bodies, but upon prolonged incubation mediated disaggregation of otherwise stable inclusion bodies. The GroEL system was particularly efficient in inclusion body dissolution but did not lead to a corresponding increase in soluble hFGF-2 rather was promoting the proteolysis of the recombinant growth factor. Coproduction of the disaggregating DnaK system and ClpB in conjunction with small amounts of the chaperonins GroELS was most efficient in disaggregation with concomitant formation of soluble hFGF-2. Thus, fine-balanced coproduction of chaperone combinations can play an important role in the production of soluble recombinant proteins with a high aggregation propensity not through prevention of aggregation but predominantly through their disaggregating properties.
    • Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics.

      Sun, Jibin; Lu, Xin; Rinas, Ursula; Zeng, An Ping; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2007)
      Aspergillus niger is an important industrial microorganism for the production of both metabolites, such as citric acid, and proteins, such as fungal enzymes or heterologous proteins. Despite its extensive industrial applications, the genetic inventory of this fungus is only partially understood. The recently released genome sequence opens a new horizon for both scientific studies and biotechnological applications.
    • Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview.

      Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; et al. (2008)
      ABSTRACT: Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes.
    • Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular production of Hepatitis B surface antigen.

      Gurramkonda, Chandrasekhar; Adnan, Ahmad; Gäbel, Thomas; Lünsdorf, Heinrich; Ross, Anton; Nemani, Satish Kumar; Swaminathan, Sathyamangalam; Khanna, Navin; Rinas, Ursula; Helmholtz Centre for Infection Research, Braunschweig, Germany. ursula.rinas@helmholtz-hzi.de. (2009)
      ABSTRACT: BACKGROUND: Hepatitis B is a serious global public health concern. Though a safe and efficacious recombinant vaccine is available, its use in several resource-poor countries is limited by cost. We have investigated the production of Hepatitis B virus surface antigen (HBsAg) using the yeast Pichia pastoris GS115 by inserting the HBsAg gene into the alcohol oxidase 1 locus. RESULTS: Large-scale production was optimized by developing a simple fed-batch process leading to enhanced product titers. Cells were first grown rapidly to high-cell density in a batch process using a simple defined medium with low salt and high glycerol concentrations. Induction of recombinant product synthesis was carried out using rather drastic conditions, namely through the addition of methanol to a final concentration of 6 g L-1. This methanol concentration was kept constant for the remainder of the cultivation through continuous methanol feeding based on the on-line signal of a flame ionization detector employed as methanol analyzer in the off-gas stream. Using this robust feeding protocol, maximum concentrations of ~7 grams HBsAg per liter culture broth were obtained. The amount of soluble HBsAg, competent for assembly into characteristic virus-like particles (VLPs), an attribute critical to its immunogenicity and efficacy as a hepatitis B vaccine, reached 2.3 grams per liter of culture broth. CONCLUSION: In comparison to the highest yields reported so far, our simple cultivation process resulted in an ~7 fold enhancement in total HBsAg production with more than 30% of soluble protein competent for assembly into VLPs. This work opens up the possibility of significantly reducing the cost of vaccine production with implications for expanding hepatitis B vaccination in resource-poor countries.