• Ligand-mediated dimerization of the Met Receptor tyrosine kinase by the bacterial invasion protein InlB.

      Ferraris, Davide M; Gherardi, Ermanno; Di, Ying; Heinz, Dirk W; Niemann, Hartmut H; Division of Structural Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany. yyoshiki@riken.jp (2010-01-22)
      The Listeria monocytogenes surface protein InlB mediates bacterial invasion into host cells by activating the human receptor tyrosine kinase Met. So far, it is unknown how InlB or the physiological Met ligand hepatocyte growth factor/scatter factor causes Met dimerization, which is considered a prerequisite for receptor activation. We determined two new structures of InlB, revealing a recurring, antiparallel, dimeric arrangement, in which the two protomers interact through the convex face of the leucine-rich repeat domain. The same contact is found in one structure of the InlB-Met complex. Mutations disrupting the interprotomeric contact of InlB reduced its ability to activate Met and downstream signaling. Conversely, stabilization of this crystal contact by two intermolecular disulfide bonds generates a constitutively dimeric InlB variant with exceptionally high signaling activity, which can stimulate cell motility and cell division. These data demonstrate that the signaling-competent InlB-Met complex assembles with 2:2 stoichiometry around a back-to-back InlB dimer, enabling the direct contact between the stalk region of two Met molecules.
    • Isolation, characterisation and molecular imaging of a high-molecular-weight insect biliprotein, a member of the hexameric arylphorin protein family.

      Kayser, Hartmut; Mann, Karlheinz; Machaidze, Gia; Nimtz, Manfred; Ringler, Philippe; Müller, Shirley A; Aebi, Ueli; Institut für Allgemeine Zoologie und Endokrinologie, Universität Ulm, Germany. hartmut.kayser@uni-ulm.de (2009-05-29)
      The abundant blue hemolymph protein of the last instar larvae of the moth Cerura vinula was purified and characterized by protein-analytical, spectroscopic and electron microscopic methods. Amino acid sequences obtained from a large number of cleavage peptides revealed a high level of similarity of the blue protein with arylphorins from a number of other moth species. In particular, there is a high abundance of the aromatic amino acids tyrosine and phenylalanine amounting to about 19% of total amino acids and a low content of methionine (0.8%) in the Cerura protein. The mass of the native protein complex was studied by size-exclusion chromatography, analytical ultracentrifugation, dynamic light scattering and scanning transmission electron microscopy and found to be around 500 kDa. Denaturating gel electrophoresis and mass spectrometry suggested the presence of two proteins with masses of about 85 kDa. The native Cerura protein is, therefore, a hexameric complex of two different subunits of similar size, as is known for arylphorins. The protein was further characterized as a weakly acidic (pI approximately 5.5) glycoprotein containing mannose, glucose and N-acetylglucosamine in an approximate ratio of 10:1:1. The structure proposed for the most abundant oligosaccharide of the Cerura arylphorin was the same as already identified in arylphorins from other moths. The intense blue colour of the Cerura protein is due to non-covalent association with a bilin of novel structure at an estimated protein subunit-to-ligand ratio of 3:1. Transmission electron microscopy of the biliprotein showed single particles of cylindrical shape measuring about 13 nm in diameter and 9 nm in height. A small fraction of particles of the same diameter but half the height was likely a trimeric arylphorin dissociation intermediate. Preliminary three-dimensional reconstruction based on averaged transmission electron microscopy projections of the individual particles revealed a double-trimeric structure for the hexameric Cerura biliprotein complex, suggesting it to be a dimer of trimers.
    • Isolation of isomangiferin from honeybush (Cyclopia subternata) using high-speed counter-current chromatography and high-performance liquid chromatography.

      de Beer, Dalene; Jerz, Gerold; Joubert, Elizabeth; Wray, Victor; Winterhalter, Peter; ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa. dbeerd@arc.agric.za (2009-05-08)
      Isomangiferin was isolated from Cyclopia subternata using a multi-step process including extraction, liquid-liquid partitioning, high-speed counter-current chromatography (HSCCC) and semi-preparative reversed-phase high-performance liquid chromatography (HPLC). Enrichment of phenolic compounds in a methanol extract of C. subternata leaves was conducted using liquid-liquid partitioning with ethyl acetate-methanol-water (1:1:2, v/v). The enriched fraction was further fractionated using HSCCC with a ternary solvent system consisting of tert-butyl methyl ether-n-butanol-acetonitrile-water (3:1:1:5, v/v). Isomangiferin was isolated by semi-preparative reversed-phase HPLC from a fraction containing mostly mangiferin and isomangiferin. The chemical structure of isomangiferin was confirmed by LC-high-resolution electrospray ionization MS, as well as one- and two-dimensional NMR spectroscopy.
    • Structure of the type III secretion recognition protein YscU from Yersinia enterocolitica.

      Wiesand, Ulrich; Sorg, Isabel; Amstutz, Marlise; Wagner, Stefanie; van den Heuvel, Joop; Lührs, Thorsten; Cornelis, Guy R; Heinz, Dirk W; Division of Structural Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2009-01-23)
      The inner-membrane protein YscU has an important role during the assembly of the Yersinia enterocolitica type III secretion injectisome. Its cytoplasmic domain (YscU(C)) recognizes translocators as individual substrates in the export hierarchy. Activation of YscU entails autocleavage at a conserved NPTH motif. Modification of this motif markedly changes the properties of YscU, including translocator export cessation and production of longer injectisome needles. We determined the crystal structures of the uncleaved variants N263A and N263D of YscU(C) at 2.05 A and 1.55 A resolution, respectively. The globular domain is found to consist of a central, mixed beta-sheet surrounded by alpha-helices. The NPTH motif forms a type II beta-turn connecting two beta-strands. NMR analysis of cleaved and uncleaved YscU(C) indicates that the global structure of the protein is retained in cleaved YscU(C). The structure of YscU(C) variant N263D reveals that wild type YscU(C) is poised for cleavage due to an optimal reaction geometry for nucleophilic attack of the scissile bond by the side chain of Asn263. In vivo analysis of N263Q and H266A/R314A YscU variants showed a phenotype that combines the absence of translocator secretion with normal needle-length control. Comparing the structure of YscU to those of related proteins reveals that the linker domain between the N-terminal transmembrane domain and the autocleavage domain can switch from an extended to a largely alpha-helical conformation, allowing for optimal positioning of the autocleavage domain during injectisome assembly.
    • Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular production of Hepatitis B surface antigen.

      Gurramkonda, Chandrasekhar; Adnan, Ahmad; Gäbel, Thomas; Lünsdorf, Heinrich; Ross, Anton; Nemani, Satish Kumar; Swaminathan, Sathyamangalam; Khanna, Navin; Rinas, Ursula; Helmholtz Centre for Infection Research, Braunschweig, Germany. ursula.rinas@helmholtz-hzi.de. (2009)
      ABSTRACT: BACKGROUND: Hepatitis B is a serious global public health concern. Though a safe and efficacious recombinant vaccine is available, its use in several resource-poor countries is limited by cost. We have investigated the production of Hepatitis B virus surface antigen (HBsAg) using the yeast Pichia pastoris GS115 by inserting the HBsAg gene into the alcohol oxidase 1 locus. RESULTS: Large-scale production was optimized by developing a simple fed-batch process leading to enhanced product titers. Cells were first grown rapidly to high-cell density in a batch process using a simple defined medium with low salt and high glycerol concentrations. Induction of recombinant product synthesis was carried out using rather drastic conditions, namely through the addition of methanol to a final concentration of 6 g L-1. This methanol concentration was kept constant for the remainder of the cultivation through continuous methanol feeding based on the on-line signal of a flame ionization detector employed as methanol analyzer in the off-gas stream. Using this robust feeding protocol, maximum concentrations of ~7 grams HBsAg per liter culture broth were obtained. The amount of soluble HBsAg, competent for assembly into characteristic virus-like particles (VLPs), an attribute critical to its immunogenicity and efficacy as a hepatitis B vaccine, reached 2.3 grams per liter of culture broth. CONCLUSION: In comparison to the highest yields reported so far, our simple cultivation process resulted in an ~7 fold enhancement in total HBsAg production with more than 30% of soluble protein competent for assembly into VLPs. This work opens up the possibility of significantly reducing the cost of vaccine production with implications for expanding hepatitis B vaccination in resource-poor countries.
    • The new Unified Theory of ATP Synthesis/Hydrolysis and Muscle Contravtion, Its Manifold Fundamental Consequences and Mechanistic Implications and Its Applications in Health and Disease

      Nath, Sunil; Structural Biology, Helmholtz Centre for Infection Research (Molecular Diversity Preservation International, 2008-09)
    • In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques.

      Ganzlin, Markus; Rinas, Ursula; Helmholtz Centre for Infection Research, (Former German Research Centre for Biotechnology, GBF), Inhoffenstrasse 7, Braunschweig, Germany. (2008-06-30)
      An in-depth characterization of the Aspergillus niger glucoamylase (glaA) promoter performance was carried out on defined medium employing multi-well high-throughput screening as well as controlled batch and fed-batch bioreactor culture techniques with GFP as a fluorescent reporter protein. A variety of metabolizable carbon substrates and non-metabolizable analogs were screened with regard to their effect on the glaA expression system. The results clearly demonstrate that only starch and its hydrolytic products, including glucose, act as inducers. However, induction of the glaA expression system through the monosaccharide glucose is significantly lower compared to starch and the higher molecular weight starch degradation products. All other 26 carbon substrates tested do not induce, or even, as in the case of the easily metabolizable monosaccharide xylose, repress glaA-promoter controlled gene expression in the presence of the inducing disaccharide maltose with an increase of repression strength by increasing xylose concentrations. The complex effect of glucose on glaA-promoter controlled expression was also analyzed using non-metabolizable glucose analogs, namely 5-thio-glucose and 2-deoxyglucose, which were identified as novel and potent inducers of the glaA expression system. The results show that the induction strength depends on the inducer concentration with a maximum at defined concentrations and lower induction or even repression at concentrations above. Moreover, controlled fed-batch cultivations using a high maltose feed rate with concomitant extracellular accumulation of glucose resulted in lower levels of the reporter protein compared to cultures with a low-maltose feed rate without extracellular glucose accumulation, thus supporting the conclusion that increasing the glucose concentration beyond a critical point reduces the induction strength or may even cause repression. This way, the speed of polymer hydrolysis, glucose uptake and intracellular breakdown can be fine-tuned for optimal fungal growth and the metabolic burden for glucoamylase synthesis can be limited adequately in response to nutrient availability.
    • Structural characterization of the exopolysaccharide PS-EDIV from Sphingomonas pituitosa strain DSM 13101.

      Schultheis, Ellen; Dreger, Michael A; Nimtz, Manfred; Wray, Victor; Hempel, Dietmar C; Nörtemann, Bernd; Institute of Biochemical Engineering, Technical University of Braunschweig, Braunschweig, Germany. (2008-04)
      Members of the bacterial genus Sphingomonas are known to produce highly viscous polysaccharides in solution. The exopolysaccharide PS-EDIV was produced by Sphingomonas pituitosa strain DSM 13101, purified using centrifugation, and precipitation and its structure was elucidated by 1D and 2D NMR techniques and chemical microderivatization combined with various mass spectrometric techniques. The following repeating unit of the polysaccharide could be identified: [formula: see text]. In addition, the polysaccharide also contains acetyl and glyceryl groups whose exact positions were not determined. PS-EDIV is similar in structure to a known exopolysaccharide but differs in being the first bacterial polysaccharide in which two different glucuronic acids are combined. It caused a high viscosity of the culture broth after cultivation for 48 h, although a gelation was not observed.
    • X-ray and neutron small-angle scattering analysis of the complex formed by the Met receptor and the Listeria monocytogenes invasion protein InlB.

      Niemann, Hartmut H; Petoukhov, Maxim V; Härtlein, Michael; Moulin, Martine; Gherardi, Ermanno; Timmins, Peter; Heinz, Dirk W; Svergun, Dmitri I; Division of Structural Biology, Helmholtz Center for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2008-03-21)
      The Listeria monocytogenes surface protein InlB binds to the extracellular domain of the human receptor tyrosine kinase Met, the product of the c-met proto-oncogene. InlB binding activates the Met receptor, leading to uptake of Listeria into normally nonphagocytic host cells. The N-terminal half of InlB (InlB(321)) is sufficient for Met binding and activation. The complex between this Met-binding domain of InlB and various constructs of the Met ectodomain was characterized by size exclusion chromatography and dynamic light scattering, and structural models were built using small-angle X-ray scattering and small-angle neutron scattering. Although most receptor tyrosine kinase ligands induce receptor dimerization, InlB(321) consistently binds the Met ectodomain with a 1:1 stoichiometry. A construct comprising the Sema and PSI domains of Met, although sufficient to bind the physiological Met ligand hepatocyte growth factor/scatter factor, does not form a complex with InlB(321) in solution, highlighting the importance of Met Ig domains for InlB binding. Small-angle X-ray scattering and small-angle neutron scattering measurements of ligand and receptor, both free and in complex, reveal an elongated shape for the receptor. The four Ig domains form a bent, rather than a fully extended, conformation, and InlB(321) binds to Sema and the first Ig domain of Met, in agreement with the recent crystal structure of a smaller Met fragment in complex with InlB(321). These results call into question whether receptor dimerization is the basic underlying event in InlB(321)-mediated Met activation and demonstrate differences in the mechanisms by which the physiological ligand hepatocyte growth factor/scatter factor and InlB(321) bind and activate the Met receptor.
    • Structures and diseases.

      Wendt, K Ulrich; Weiss, Manfred S; Cramer, Patrick; Heinz, Dirk W; Department of Chemical and Analytical Sciences at Sanofi-Aventis, D-65926 Frankfurt, Germany. (2008-02)
    • Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD.

      Büttner, Carina R; Sorg, Isabel; Cornelis, Guy R; Heinz, Dirk W; Niemann, Hartmut H; Division of Structural Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2008-01-25)
      Many Gram-negative bacteria use a type III secretion (T3S) system to directly inject effector molecules into eucaryotic cells in order to establish a symbiotic or pathogenic relationship with their host. The translocation of many T3S proteins requires specialized chaperones from the bacterial cytosol. SycD belongs to a class of T3S chaperones that assists the secretion of pore-forming translocators and, specifically chaperones the translocators YopB and YopD from enteropathogenic Yersinia enterocolitica. In addition, SycD is involved in the regulation of virulence factor biosynthesis and secretion. In this study, we present two crystal structures of Y. enterocolitica SycD at 1.95 and 2.6 A resolution, the first experimental structures of a T3S class II chaperone specific for translocators. The fold of SycD is entirely alpha-helical and reveals three tetratricopeptide repeat-like motifs that had been predicted from amino acid sequence. In both structures, SycD forms dimers utilizing residues from the first tetratricopeptide repeat motif. Using site-directed mutagenesis and size exclusion chromatography, we verified that SycD forms head-to-head homodimers in solution. Although in both structures, dimerization largely depends on the same residues, the two assemblies represent alternative dimers that exhibit different monomer orientations and overall shape. In these two distinct head-to-head dimers, both the concave and the convex surface of each monomer are accessible for interactions with the SycD binding partners YopB and YopD. A SycD variant carrying two point mutations in the dimerization interface is properly folded but defective in dimerization. Expression of this stable SycD monomer in Yersinia does not rescue the phenotype of a sycD null mutant, suggesting a physiological relevance of the dimerization interface.
    • Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview.

      Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; et al. (2008)
      ABSTRACT: Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes.
    • In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures.

      Ganzlin, Markus; Marose, Stefan; Lu, Xin; Hitzmann, Bernd; Scheper, Thomas; Rinas, Ursula; Helmholtz Centre for Infection Research (former German Research Centre for Biotechnology - GBF), Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-12-01)
      The production of a mutant green fluorescent protein (S65TGFP), controlled by the maltose inducible glucoamylase promoter, was followed in situ in fed-batch cultures of recombinant Aspergillus niger using multi-wavelength fluorescence spectroscopy. Disturbance of quantitative product analysis by interfering fluorescence signals was resolved by using a set of defined combinations of excitation and emission wavelengths (lambda(ex)/lambda(em)). This technique resulted in excellent linearity between on-line signal and off-line determined S65TGFP concentrations. Spore germination was detectable in situ by monitoring the back scattered light intensity. Moreover, flavin-like fluorophores were identified as the dominating fungal host fluorophores. The time-dependent intensity of this fluorophore, potentially fungal flavin-containing oxidoreductase(s), did not correlate with the biomass concentration but correlated well with the fungal metabolic activity (e.g. respiratory activity). Other fluorophores commonly found in microbial cultures such NADH, pyridoxine and the aromatic amino acids, tryptophan, phenylalanine and tyrosine did not contribute significantly to the culture fluorescence of A. niger. Thus, multi-wavelength fluorescence spectroscopy has proven to be an effective tool for simultaneous on-line monitoring of the most relevant process variables in fungal cultures, e.g. spore germination, metabolic activity, and quantitative product formation.
    • Production and modification of bioactive surfactants

      LANGER, Olaf; Palme, Olov; Wray, Victor; Tokuda, Harukuni; Lang, Sigmund (2007-09-20)
    • Glutamate recognition and hydride transfer by Escherichia coli glutamyl-tRNA reductase.

      Lüer, Corinna; Schauer, Stefan; Virus, Simone; Schubert, Wolf-Dieter; Heinz, Dirk W; Moser, Jürgen; Jahn, Dieter; Institute of Microbiology, Technical University Braunschweig, Germany. (2007-09)
      The initial step of tetrapyrrole biosynthesis in Escherichia coli involves the NADPH-dependent reduction by glutamyl-tRNA reductase (GluTR) of tRNA-bound glutamate to glutamate-1-semialdehyde. We evaluated the contribution of the glutamate moiety of glutamyl-tRNA to substrate specificity in vitro using a range of substrates and enzyme variants. Unexpectedly, we found that tRNA(Glu) mischarged with glutamine was a substrate for purified recombinant GluTR. Similarly unexpectedly, the substitution of amino acid residues involved in glutamate side chain binding (S109A, T49V, R52K) or in stabilizing the arginine 52 glutamate interaction (glutamate 54 and histidine 99) did not abrogate enzyme activity. Replacing glutamine 116 and glutamate 114, involved in glutamate-enzyme interaction near the aminoacyl bond to tRNA(Glu), by leucine and lysine, respectively, however, did abolish reductase activity. We thus propose that the ester bond between glutamate and tRNA(Glu) represents the crucial determinant for substrate recognition by GluTR, whereas the necessity for product release by a 'back door' exit allows for a degree of structural variability in the recognition of the amino acid moiety. Analyzing the esterase activity, which occured in the absence of NADPH, of GluTR variants using the substrate 4-nitrophenyl acetate confirmed the crucial role of cysteine 50 for thioester formation. Finally, the GluTR variant Q116L was observed to lack reductase activity whereas esterase activity was retained. Structure-based molecular modeling indicated that glutamine 116 may be crucial in positioning the nicotinamide group of NADPH to allow for productive hydride transfer to the substrate. Our data thus provide new information about the distinct function of active site residues of GluTR from E. coli.
    • Thermodynamically reengineering the listerial invasion complex InlA/E-cadherin.

      Wollert, Thomas; Heinz, Dirk W; Schubert, Wolf-Dieter; Molecular Host-Pathogen Interactions, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2007-08-28)
      Biological processes essentially all depend on the specific recognition between macromolecules and their interaction partners. Although many such interactions have been characterized both structurally and biophysically, the thermodynamic effects of small atomic changes remain poorly understood. Based on the crystal structure of the bacterial invasion protein internalin (InlA) of Listeria monocytogenes in complex with its human receptor E-cadherin (hEC1), we analyzed the interface to identify single amino acid substitutions in InlA that would potentially improve the overall quality of interaction and hence increase the weak binding affinity of the complex. Dissociation constants of InlA-variant/hEC1 complexes, as well as enthalpy and entropy of binding, were quantified by isothermal titration calorimetry. All single substitutions indeed significantly increase binding affinity. Structural changes were verified crystallographically at < or =2.0-A resolution, allowing thermodynamic characteristics of single substitutions to be rationalized structurally and providing unique insights into atomic contributions to binding enthalpy and entropy. Structural and thermodynamic data of all combinations of individual substitutions result in a thermodynamic network, allowing the source of cooperativity between distant recognition sites to be identified. One such pair of single substitutions improves affinity 5,000-fold. We thus demonstrate that rational reengineering of protein complexes is possible by making use of physically distant hot spots of recognition.
    • Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB.

      Niemann, Hartmut H; Jäger, Volker; Butler, P Jonathan G; van den Heuvel, Joop; Schmidt, Sabine; Ferraris, Davide; Gherardi, Ermanno; Heinz, Dirk W; Division of Structural Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2007-07-27)
      The tyrosine kinase Met, the product of the c-met proto-oncogene and the receptor for hepatocyte growth factor/scatter factor (HGF/SF), mediates signals critical for cell survival and migration. The human pathogen Listeria monocytogenes exploits Met signaling for invasion of host cells via its surface protein InlB. We present the crystal structure of the complex between a large fragment of the human Met ectodomain and the Met-binding domain of InlB. The concave face of the InlB leucine-rich repeat region interacts tightly with the first immunoglobulin-like domain of the Met stalk, a domain which does not bind HGF/SF. A second contact between InlB and the Met Sema domain locks the otherwise flexible receptor in a rigid, signaling competent conformation. Full Met activation requires the additional C-terminal domains of InlB which induce heparin-mediated receptor clustering and potent signaling. Thus, although it elicits a similar cellular response, InlB is not a structural mimic of HGF/SF.
    • Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa.

      Hagelueken, Gregor; Wiehlmann, Lutz; Adams, Thorsten M; Kolmar, Harald; Heinz, Dirk W; Tümmler, Burkhard; Schubert, Wolf-Dieter; Molecular Host-Pathogen Interactions, Division of Structural Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2007-07-24)
      Crude oil spills represent a major ecological threat because of the chemical inertness of the constituent n-alkanes. The Gram-negative bacterium Pseudomonas aeruginosa is one of the few bacterial species able to metabolize such compounds. Three chromosomal genes, rubB, rubA1, and rubA2 coding for an NAD(P)H:rubredoxin reductase (RdxR) and two rubredoxins (Rdxs) are indispensable for this ability. They constitute an electron transport (ET) pathway that shuttles reducing equivalents from carbon metabolism to the membrane-bound alkane hydroxylases AlkB1 and AlkB2. The RdxR-Rdx system also is crucial as part of the oxidative stress response in archaea or anaerobic bacteria. The redox couple has been analyzed in detail as a model system for ET processes. We have solved the structure of RdxR of P. aeruginosa both alone and in complex with Rdx, without the need for cross-linking, and both structures were refined at 2.40- and 2.45-A resolution, respectively. RdxR consists of two cofactor-binding domains and a C-terminal domain essential for the specific recognition of Rdx. Only a small number of direct interactions govern mutual recognition of RdxR and Rdx, corroborating the transient nature of the complex. The shortest distance between the redox centers is observed to be 6.2 A.
    • Mechanistic studies on cationic ring-opening polymerisation of cyclodextrin derivatives using various Lewis acids

      Bösch, Andreas; Nimtz, Manfred; Mischnik, Petra (Springer Science+Business Media B.V., 2007-06-19)
    • Raver1 is an integral component of muscle contractile elements.

      Zieseniss, Anke; Schroeder, Ulrich; Buchmeier, Sabine; Schoenenberger, Cora-Ann; van den Heuvel, Joop; Jockusch, Brigitte M; Illenberger, Susanne; Cell Biology, Zoological Institute, Technical University of Braunschweig, Biocentre, Spielmannstrasse 7, 38092 Braunschweig, Germany. (2007-03)
      Raver1, a ubiquitously expressed protein, was originally identified as a ligand for metavinculin, the muscle-specific isoform of the microfilament-associated protein vinculin. The protein resides primarily in the nucleus, where it colocalises and may interact with polypyrimidine-tract-binding protein, which is involved in alternative splicing processes. During skeletal muscle differentiation, raver1 translocates to the cytoplasm and eventually targets the Z-line of sarcomeres. Here, it colocalises with metavinculin, vinculin and alpha-actinin, all of which have biochemically been identified as raver1 ligands. To obtain more information about the potential role of raver1 in muscle structure and function, we have investigated its distribution and fine localisation in mouse striated and smooth muscle, by using three monoclonal antibodies that recognise epitopes in different regions of the raver1 protein. Our immunofluorescence and immunoelectron-microscopic results indicate that the cytoplasmic accumulation of raver1 is not confined to skeletal muscle but also occurs in heart and smooth muscle. Unlike vinculin and metavinculin, cytoplasmic raver1 is not restricted to costameres but additionally represents an integral part of the sarcomere. In isolated myofibrils and in ultrathin sections of skeletal muscle, raver1 has been found concentrated at the I-Z-I band. A minor fraction of raver1 is present in the nuclei of all three types of muscle. These data indicate that, during muscle differentiation, raver1 might link gene expression with structural functions of the contractile machinery of muscle.