• Breaking the vicious cycle of antibiotic killing and regrowth of biofilm-residing .

      Müsken, Mathias; Pawar, Vinay; Schwebs, Timo; Bähre, Heike; Felgner, Sebastian; Weiss, Siegfried; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-10-08)
      Biofilm-residing bacteria embedded in an extracellular matrix are protected from diverse physico-chemical insults. In addition to the general recalcitrance of biofilm-bacteria, high bacterial loads in biofilm-associated infections significantly diminishes the efficacy of antimicrobials due to a low per-cell antibiotic concentration. Accordingly, present antimicrobial treatment protocols, that have been established to serve the eradication of acute infections, fail to clear biofilm-associated chronic infections. In the present study, we applied automated confocal microscopy on Pseudomonas aeruginosa to monitor dynamic killing of biofilm-grown bacteria by tobramycin and colistin in real-time. We revealed that the time required for surviving bacteria to repopulate the biofilm could be taken as measure for effectiveness of the antimicrobial treatment. It depends on the: i) nature and concentration of the antibiotic, ii) duration of antibiotic treatment; iii) application as mono or combination therapy and iv) time intervals of drug administration. The vicious cycle of killing and repopulation of biofilm bacteria could also be broken in an in vivo model system by applying successive antibiotic dosages with time intervals that do not allow full reconstitution of the biofilm communities. Treatment regimens that consider the important aspects of antimicrobial killing kinetics bear the potential to improve control of biofilm regrowth. This is an important and underestimated factor that is bound to ensure sustainable treatment success of chronic infections.
    • Global genotype-phenotype correlations in Pseudomonas aeruginosa.

      Pommerenke, Claudia; Müsken, Mathias; Becker, Tanja; Dötsch, Andreas; Klawonn, Frank; Häussler, Susanne; Chronic Pseudomonas Infections, Helmholtz Center for Infection Research, Braunschweig, Germany. (2010)
      Once the genome sequence of an organism is obtained, attention turns from identifying genes to understanding their function, their organization and control of metabolic pathways and networks that determine its physiology. Recent technical advances in acquiring genome-wide data have led to substantial progress in identifying gene functions. However, we still do not know the function of a large number of genes and, even when a gene product has been assigned to a functional class, we cannot normally predict its contribution to the phenotypic behaviour of the cell or organism--the phenome. In this study, we assessed bacterial growth parameters of 4030 non-redundant PA14 transposon mutants in the pathogenic bacterium Pseudomonas aeruginosa. The genome-wide simultaneous analysis of 119 distinct growth-related phenotypes uncovered a comprehensive phenome and provided evidence that most genotypes are not phenotypically isolated but rather define specific complex phenotypic clusters of genotypes. Since phenotypic overlap was demonstrated to reflect the relatedness of genotypes on a global scale, knowledge of an organism's phenome might significantly contribute to the advancement of functional genomics.
    • Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV) of Pseudomonas aeruginosa.

      Wei, Qing; Tarighi, Saeed; Dötsch, Andreas; Häussler, Susanne; Müsken, Mathias; Wright, Victoria J; Cámara, Miguel; Williams, Paul; Haenen, Steven; Boerjan, Bart; et al. (2011)
      Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.
    • The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling.

      Schmidt, Juliane; Müsken, Mathias; Becker, Tanja; Magnowska, Zofia; Bertinetti, Daniela; Möller, Stefan; Zimmermann, Bastian; Herberg, Friedrich W; Jänsch, Lothar; Häussler, Susanne; et al. (2011)
      The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa.