• Direct conversion of porcine primary fibroblasts into hepatocyte-like cells.

      Fráguas-Eggenschwiler, Mariane; Eggenschwiler, Reto; Söllner, Jenny-Helena; Cortnumme, Leon; Vondran, Florian W R; Cantz, Tobias; Ott, Michael; Niemann, Heiner; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Nature Research, 2021-04-29)
      The pig is an important model organism for biomedical research, mainly due to its extensive genetic, physiological and anatomical similarities with humans. Until date, direct conversion of somatic cells into hepatocyte-like cells (iHeps) has only been achieved in rodents and human cells. Here, we employed lentiviral vectors to screen a panel of 12 hepatic transcription factors (TF) for their potential to convert porcine fibroblasts into hepatocyte-like cells. We demonstrate for the first time, hepatic conversion of porcine somatic cells by over-expression of CEBPα, FOXA1 and HNF4α2 (3TF-piHeps). Reprogrammed 3TF-piHeps display a hepatocyte-like morphology and show functional characteristics of hepatic cells, including albumin secretion, Dil-AcLDL uptake, storage of lipids and glycogen and activity of cytochrome P450 enzymes CYP1A2 and CYP2C33 (CYP2C9 in humans). Moreover, we show that markers of mature hepatocytes are highly expressed in 3TF-piHeps, while fibroblastic markers are reduced. We envision piHeps as useful cell sources for future studies on drug metabolism and toxicity as well as in vitro models for investigation of pig-to-human infectious diseases.
    • Establishment of porcine and human expanded potential stem cells.

      Gao, Xuefei; Nowak-Imialek, Monika; Chen, Xi; Chen, Dongsheng; Herrmann, Doris; Ruan, Degong; Chen, Andy Chun Hang; Eckersley-Maslin, Melanie A; Ahmad, Shakil; Lee, Yin Lau; et al. (Nature publishing group(NPG), 2019-06-03)
      We recently derived mouse expanded potential stem cells (EPSCs) from individual blastomeres by inhibiting the critical molecular pathways that predispose their differentiation. EPSCs had enriched molecular signatures of blastomeres and possessed developmental potency for all embryonic and extra-embryonic cell lineages. Here, we report the derivation of porcine EPSCs, which express key pluripotency genes, are genetically stable, permit genome editing, differentiate to derivatives of the three germ layers in chimeras and produce primordial germ cell-like cells in vitro. Under similar conditions, human embryonic stem cells and induced pluripotent stem cells can be converted, or somatic cells directly reprogrammed, to EPSCs that display the molecular and functional attributes reminiscent of porcine EPSCs. Importantly, trophoblast stem-cell-like cells can be generated from both human and porcine EPSCs. Our pathway-inhibition paradigm thus opens an avenue for generating mammalian pluripotent stem cells, and EPSCs present a unique cellular platform for translational research in biotechnology and regenerative medicine.